首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
阳离子或阴离子带不饱和键、可发生均聚或共聚反应的离子液体可用于合成高分子材料。本文综述了可聚合离子液体合成的智能响应性材料、高分子分散剂、导电高分子材料、吸液保液材料、气体吸收材料、高分子催化剂、新型碳材料、多孔材料、生物医用高分子材料、色谱分离材料、微波吸收材料的合成、性能及应用的研究进展, 提出可聚合离子液体的种类多、阴离子与阳离子的组合具有可设计性、离子液体具有特殊的电离属性, 可赋予主链含离子液体结构单元的高分子材料具有特殊的性能, 在诸多领域具有潜在的应用前景。  相似文献   

2.
生物高分子聚乳酸的合成综述   总被引:1,自引:0,他引:1  
聚乳酸是一种具有良好生物相容性,可以降解的高分子材料,广泛应用于医用、农业、工业、食品包装等领域,其中在医用领域的应用被越来越多的人们所重视.聚乳酸的合成方法主要有两种:乳酸直接聚合和丙交酯开环聚合.综述了近年来聚乳酸合成的最新研究进展,阐述了两种合成方法的具体内容及原理,并对聚乳酸的前景做出了高度的展望.  相似文献   

3.
搅拌速度对活性硅酸聚合的影响   总被引:1,自引:0,他引:1  
活性硅酸是制备硅酸助凝剂及新型含金属离子的聚硅酸系无机高分子絮凝剂的重要原料,活性硅酸的聚合速度受搅拌速度的影响显著,而中国对这方面的报道较少.采用激光光散射、浊度、黏度等多种表征方法对活性硅酸在聚合过程中的形态变化进行了监测及表征,结果表明:搅拌速度越快,硅酸的聚合速度越快,但形成的有效粒径反而越小;选择在静置条件下制备活性硅酸,有利于形成高分子量、高黏度、高浊度的聚硅酸,更有利于聚硅酸吸附架桥作用的发挥,这为制备高效混凝剂提供了实验依据.  相似文献   

4.
刘旭  刘昊阳  袁伟忠  任天斌  任杰 《塑料》2013,42(1):44-47,104
活性聚合由于在控制聚合物一次结构方面的优势,多面体低聚物倍半硅氧烷(POSS)由于其特殊的笼型结构、纳米尺寸,以活性聚合制备POSS/聚合物杂化材料得到了广泛的关注。介绍了以活性聚合制备POSS/聚合物杂化材料的方法,指出了目前仍存在的问题、展望了未来的发展趋势。  相似文献   

5.
随着现代高分子材料加工技术的发展,人工合成高分子材料在各个领域,尤其是医学领域得到了广泛应用,医用高分子材料在疾病诊断及治疗方面取得了突破性进展。随着医学技术的进步,生物医用高分子材料也面临着新的挑战,并逐步向精细化和功能化的方向发展。从生物医用高分子材料制备应用方面进行概述,阐述了不同高分子材料的特点及应用前景,以期为生物医用高分子材料研究提供参考。  相似文献   

6.
复杂聚合物链结构的可控制备与新材料   总被引:1,自引:0,他引:1       下载免费PDF全文
罗英武 《化工学报》2013,64(2):415-426
自由基聚合与配位聚合的产物通常为宽分子量分布的均聚物或无规共聚物。近二十年来,活性/可控自由基聚合、活性/可控配位聚合、链穿梭聚合的研究取得突破。这些方法使得几乎所有的乙烯基单体,特别是廉价易得的单体,都可用作原料来制备原来无法制备得到的两嵌段、多嵌段共聚物、梯度共聚物等更为复杂聚合链结构。合理设计这些复杂的链结构,有望得到高性能、高附加值合成材料。介绍了这些新型聚合原理的机理、新进展,讨论了它们潜在的应用前景。  相似文献   

7.
反相悬浮聚合技术的研究进展与应用   总被引:6,自引:0,他引:6  
刘海峰  薛屏 《应用化工》2005,34(8):460-464
介绍了反相悬浮聚合技术合成球状亲水性高分子材料的优势及其在球状超强吸液树脂、酶固定化载体和高分子絮凝剂等领域的应用,着重讨论了反相悬浮聚合体系中成球聚合的影响因素,指出与单体相匹配的分散剂和分散介质的选择是影响聚合体系稳定性和产物性能及制备成本的关键,具有分散和隔离保护双重作用的高分子表面活性剂的开发应用是发展趋势和研究热点。  相似文献   

8.
介绍了“活性”自由基聚合,特别是原子转移自由基聚合(ATRP)的发展及其在合成高分子材料中的应用前景。  相似文献   

9.
脂肪族环状碳酸酯的合成及其开环聚合研究进展   总被引:1,自引:0,他引:1  
脂肪族聚碳酸酯是生物医用材料中的一个重要组成部分,而脂肪族环状碳酸酯开环聚合是制备脂肪族聚碳酸酯的一类重要方法。本文介绍了近年来不同大小和种类的脂肪族环状碳酸酯单体的合成及其聚合物的制备,并对其阳离子开环聚合、阴离子开环聚合和配位聚合的机理进行了讨论。  相似文献   

10.
生物医用高分子材料具有良好的生物相容性和易加工性,还有可控的可降解性。众多的生物医用材料之中,生物医用高分子材料作为其中的主要组成部分,尤其是在临床医学中使用量明显高于其他领域。该文从临床医学中对生物医用高分子材料的要求,生物医用高分子材料的分类和合成方法,以及生物医用高分子材料在临床医学中的应用三个方面详细阐述了临床医学中的高分子材料。最后对临床医学中的高分子材料的发展方向进行了展望。  相似文献   

11.
综述了疏水缔合水溶性聚合物的合成和应用的研究进展。合成方法包括大分子反应法、共聚法、乳液聚合法、阴离子聚合法、活性可控自由基聚合、超声波法、超临界二氧化碳介质法等,应用领域包括石油工业、涂料工业、污水处理、生物医药材料、工程材料等,并且展望了新的合成方向和应用前景。  相似文献   

12.
自由基聚合是工业生产高分子产品的重要技术,也是制备聚合物/无机纳米复合材料时对纳米粒子表面改性的重要手段。综述了自由基聚合表面改性纳米粒子的研究进展。分别对普通自由基聚合和活性聚合表面改性纳米粒子机理和分类进行了归纳和总结。  相似文献   

13.
BACKGROUND: Biocatalytic approaches in polymer science are expected to further increase the diversity of polymeric materials. And the full exploitation of biocatalysis in polymer science will require the development of compatible chemoenzyme‐catalyzed methods. RESULTS: The well‐defined diblock copolymer poly(2,2,2‐trichloroethanol 10‐hydroxydecanate)‐block‐poly(glycidyl methacrylate) (P(TCE‐10‐HD)‐b‐PGMA) was obtained by combining enzymatic condensation polymerization and atom transfer radical polymerization (ATRP). P(TCE‐10‐HD) was prepared by enzymatic condensation polymerization of 10‐hydroxydecanoic acid and 2,2,2‐trichloroethanol. This ? CCl3‐terminated polyester permitted subsequent ATRP of glycidyl methacrylate. Kinetic studies indicated a ‘living’ controlled radical polymerization. The self‐assembly behavior of the amphiphilic diblock copolymer, in tetrahydrofuran/water, gave rise to aggregates with diameters ranging from 160 to 240 nm. The morphology of the assembly particles was studied using atomic force microscopy, transmission electron microscopy and scanning electron microscopy. CONCLUSION: To obtain the ATRP macromolecular initiator, this one‐step method is more convenient than other two‐step methods. The results of NMR, Fourier transform infrared and gel permeation chromatography analyses testified that this method is feasible. The formulated vesicles have great potential as biomedical materials. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
谭英杰  梁玉蓉 《山西化工》2005,25(4):17-19,66
阐述了生物医用高分子材料的应用研究与发展状况,综述了国内外生物医用高分子材料的分类、特性及研究成果,展望了未来的生物医用高分子材料的发展趋势。  相似文献   

15.
ATRP技术在新型高分子材料合成中的应用   总被引:3,自引:0,他引:3  
原子转移自由基聚合(ATRP)是用来设计一系列指定和拓朴结构和功能化聚合珠材料的一种用途广泛、简单易行、有工业前景的聚合技术。它适用于乙烯类单体在水相或有机相中合成梯形、嵌段、接枝、梳型、树枝状、星型以及有机/无机杂化材料。  相似文献   

16.
This review covers significant properties and applications of nanoclays in polymer-based nanocomposites with special emphasis on future potential. Various strategies have been adopted for nanocomposite synthesis including delamination of nanoclays through melt shearing, in situ polymerization, and sol–gel method. Proper dispersion of nanoclay results in improved properties of bulk polymer (thermal stability, mechanical strength, gas barrier, and flame retardancy). Light weight, low cost, and improved physical properties of polymer/clay materials increase their demand in modern material industries (aerospace, automobile, barrier materials, construction, and biomedical). Due to extensive use of these nanocomposites in technical fields, there are still many stones left unturned.  相似文献   

17.
活性聚合法合成含能聚合物的研究进展   总被引:1,自引:0,他引:1  
综述了活性聚合法合成含能聚合物的研究发展状况,主要介绍了活性聚合法合成含能聚合物的反应机理及性质.指出活性阳离子聚合法仍是一段时间内研究的重点,并对其今后的研究进行了展望.  相似文献   

18.
In the past decade, living radical polymerization has provided one of the most versatile methods to precisely construct designed polymer architectures with complexity and polar functionality. This process takes advantage of carbon-radical intermediates, which tolerate a variety of functional groups in monomers and reaction media. "Transition metal-catalyzed living radical polymerization", one of these living systems, has widely been employed for precision polymer synthesis. Not only can this process produce well-defined functional polymers, but it can also generate hybrids or conjugates with other (often biological) materials. Metal-catalyzed systems retain the advantages of conventional radical polymerization but distinguish themselves through a catalytic reversible halogen exchange equilibrium: the growing radical exists alongside a dormant speciesa covalent precursor capped with a terminal halogen from an initiator. The catalyst dictates the selectivity, exchange rate, and control over the polymerization. This Account provides an updated overview of our group's efforts in transition metal-catalyzed living radical polymerization with specific emphasis on the design of metal catalysts and the resulting precision polymer syntheses. With increasing use of the living processes as convenient tools for materials synthesis, researchers are currently seeking more active and versatile metal catalysts that are tolerant to functional groups. Such catalysts would enable a wider range of applications and target products, would have low metal content, could be readily removed from products, and would allow recycling. Since we first developed the "transition metal-catalyzed living radical polymerization" with RuCl 2(PPh 3) 3, FeCl 2(PPh 3) 2, and NiBr 2(PPh 3) 2, we have strived to systematically design metal catalysts to meet these new demands. For example, we have enhanced catalytic activity and control through several modifications: electron-donating or resonance-enhancing groups, moderate bulkiness, heterochelation via a ligand, and halogen-donor additives. For some catalysts, the use of amphiphilic and polymeric ligands allow efficient recovery of catalysts and convenient use in aqueous media. We have also used ligand design (phosphines) and other methods to improve the thermal stability of iron- and nickel-based catalysts and their tolerance to functional groups.  相似文献   

19.
Polymer systems have typical multiscale characteristics, both in space and time. The mesoscopic properties of polymers are difficult to describe through traditional experimental approaches. Dissipative particle dynamics (DPD) is a simulation method used for solving mesoscale problems of complex fluids and soft matter. The mesoscopic properties of polymer systems, such as conformation, dynamics, and transport properties, have been studied extensively using DPD. This paper briefly summarizes the application of DPD to research involving microchannel flow, electrospinning, free-radical polymerization, polymer self-assembly processes, polymer electrolyte fuel cells, and biomedical materials. The main features and possible development avenues of DPD are described as well.  相似文献   

20.
Ionizing radiation, such as γ, ultraviolet, microwave and X-ray radiation, has long been used in polymer chemistry as a means of initiating polymerization, crosslinking gels and decomposing particular polymer components. More recently, ionizing radiation has found application in tandem with living radical polymerization to form novel polymeric materials with defined molecular weight and narrow molecular weight distribution. In particular, γ-rays and ultraviolet light both have shown promise as sources of initiation in reversible addition-fragmentation chain transfer (RAFT) polymerization. The ability to apply these sources of initiation at low temperatures is useful in applications where elevated temperature is likely to be detrimental to the system, for instance, in preparing protein-polymer conjugates. Similarly, the use of these initiating sources at low temperature is particularly suitable for some monomers, such as allyl compounds, which have not been synthesized using any other living radical approach. The current review examines the development of ionizing radiation as a tool in RAFT polymerization, with particular reference to the elucidation of the polymerization mechanism, the synthesis of high functionality polymers and probing the kinetic parameters of the RAFT process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号