首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clustering ensembles: models of consensus and weak partitions   总被引:4,自引:0,他引:4  
Clustering ensembles have emerged as a powerful method for improving both the robustness as well as the stability of unsupervised classification solutions. However, finding a consensus clustering from multiple partitions is a difficult problem that can be approached from graph-based, combinatorial, or statistical perspectives. This study extends previous research on clustering ensembles in several respects. First, we introduce a unified representation for multiple clusterings and formulate the corresponding categorical clustering problem. Second, we propose a probabilistic model of consensus using a finite mixture of multinomial distributions in a space of clusterings. A combined partition is found as a solution to the corresponding maximum-likelihood problem using the EM algorithm. Third, we define a new consensus function that is related to the classical intraclass variance criterion using the generalized mutual information definition. Finally, we demonstrate the efficacy of combining partitions generated by weak clustering algorithms that use data projections and random data splits. A simple explanatory model is offered for the behavior of combinations of such weak clustering components. Combination accuracy is analyzed as a function of several parameters that control the power and resolution of component partitions as well as the number of partitions. We also analyze clustering ensembles with incomplete information and the effect of missing cluster labels on the quality of overall consensus. Experimental results demonstrate the effectiveness of the proposed methods on several real-world data sets.  相似文献   

2.
The clustering ensemble has emerged as a prominent method for improving robustness, stability, and accuracy of unsupervised classification solutions. It combines multiple partitions generated by different clustering algorithms into a single clustering solution. Genetic algorithms are known as methods with high ability to solve optimization problems including clustering. To date, significant progress has been contributed to find consensus clustering that will yield better results than existing clustering. This paper presents a survey of genetic algorithms designed for clustering ensembles. It begins with the introduction of clustering ensembles and clustering ensemble algorithms. Subsequently, this paper describes a number of suggested genetic-guided clustering ensemble algorithms, in particular the genotypes, fitness functions, and genetic operations. Next, clustering accuracies among the genetic-guided clustering ensemble algorithms is compared. This paper concludes that using genetic algorithms in clustering ensemble improves the clustering accuracy and addresses open questions subject to future research.  相似文献   

3.
Bagging-based spectral clustering ensemble selection   总被引:2,自引:0,他引:2  
Traditional clustering ensemble methods combine all obtained clustering results at hand. However, we can often achieve a better clustering solution if only parts of the clustering results available are combined. In this paper, we generalize the selective clustering ensemble algorithm proposed by Azimi and Fern and a novel clustering ensemble method, SELective Spectral Clustering Ensemble (SELSCE), is proposed. The component clusterings of the ensemble system are generated by spectral clustering (SC) capable of engendering diverse committees. The random scaling parameter, Nyström approximation are used to perturb SC for producing the components of the ensemble system. After the generation of component clusterings, the bagging technique, usually applied in supervised learning, is used to assess the component clustering. We randomly pick part of the available clusterings to get a consensus result and then compute normalized mutual information (NMI) or adjusted rand index (ARI) between the consensus result and the component clusterings. Finally, the components are ranked by aggregating multiple NMI or ARI values. The experimental results on UCI dataset and images demonstrate that the proposed algorithm can achieve a better result than the traditional clustering ensemble methods.  相似文献   

4.
The problem of obtaining a single “consensus” clustering solution from a multitude or ensemble of clusterings of a set of objects, has attracted much interest recently because of its numerous practical applications. While a wide variety of approaches including graph partitioning, maximum likelihood, genetic algorithms, and voting-merging have been proposed so far to solve this problem, virtually all of them work on hard partitionings, i.e., where an object is a member of exactly one cluster in any individual solution. However, many clustering algorithms such as fuzzy c-means naturally output soft partitionings of data, and forcibly hardening these partitions before applying a consensus method potentially involves loss of valuable information. In this article we propose several consensus algorithms that can be applied directly to soft clusterings. Experimental results over a variety of real-life datasets are also provided to show that using soft clusterings as input does offer significant advantages, especially when dealing with vertically partitioned data.  相似文献   

5.
Over the past few years, there has been a renewed interest in the consensus clustering problem. Several new methods have been proposed for finding a consensus partition for a set of n data objects that optimally summarizes an ensemble. In this paper, we propose new consensus clustering algorithms with linear computational complexity in n. We consider clusterings generated with random number of clusters, which we describe by categorical random variables. We introduce the idea of cumulative voting as a solution for the problem of cluster label alignment, where, unlike the common one-to-one voting scheme, a probabilistic mapping is computed. We seek a first summary of the ensemble that minimizes the average squared distance between the mapped partitions and the optimal representation of the ensemble, where the selection criterion of the reference clustering is defined based on maximizing the information content as measured by the entropy. We describe cumulative vote weighting schemes and corresponding algorithms to compute an empirical probability distribution summarizing the ensemble. Given the arbitrary number of clusters of the input partitions, we formulate the problem of extracting the optimal consensus as that of finding a compressed summary of the estimated distribution that preserves maximum relevant information. An efficient solution is obtained using an agglomerative algorithm that minimizes the average generalized Jensen-Shannon divergence within the cluster. The empirical study demonstrates significant gains in accuracy and superior performance compared to several recent consensus clustering algorithms.  相似文献   

6.
A considerable amount of work has been done in data clustering research during the last four decades, and a myriad of methods has been proposed focusing on different data types, proximity functions, cluster representation models, and cluster presentation. However, clustering remains a challenging problem due to its ill-posed nature: it is well known that off-the-shelf clustering methods may discover different patterns in a given set of data, mainly because every clustering algorithm has its own bias resulting from the optimization of different criteria. This bias becomes even more important as in almost all real-world applications, data is inherently high-dimensional and multiple clustering solutions might be available for the same data collection. In this respect, the problems of projective clustering and clustering ensembles have been recently defined to deal with the high dimensionality and multiple clusterings issues, respectively. Nevertheless, despite such two issues can often be encountered together, existing approaches to the two problems have been developed independently of each other. In our earlier work Gullo et al. (Proceedings of the international conference on data mining (ICDM), 2009a) we introduced a novel clustering problem, called projective clustering ensembles (PCE): given a set (ensemble) of projective clustering solutions, the goal is to derive a projective consensus clustering, i.e., a projective clustering that complies with the information on object-to-cluster and the feature-to-cluster assignments given in the ensemble. In this paper, we enhance our previous study and provide theoretical and experimental insights into the PCE problem. PCE is formalized as an optimization problem and is designed to satisfy desirable requirements on independence from the specific clustering ensemble algorithm, ability to handle hard as well as soft data clustering, and different feature weightings. Two PCE formulations are defined: a two-objective optimization problem, in which the two objective functions respectively account for the object- and feature-based representations of the solutions in the ensemble, and a single-objective optimization problem, in which the object- and feature-based representations are embedded into a single function to measure the distance error between the projective consensus clustering and the projective ensemble. The significance of the proposed methods for solving the PCE problem has been shown through an extensive experimental evaluation based on several datasets and comparatively with projective clustering and clustering ensemble baselines.  相似文献   

7.
Combining multiple clusterings using evidence accumulation   总被引:2,自引:0,他引:2  
We explore the idea of evidence accumulation (EAC) for combining the results of multiple clusterings. First, a clustering ensemble - a set of object partitions, is produced. Given a data set (n objects or patterns in d dimensions), different ways of producing data partitions are: 1) applying different clustering algorithms and 2) applying the same clustering algorithm with different values of parameters or initializations. Further, combinations of different data representations (feature spaces) and clustering algorithms can also provide a multitude of significantly different data partitionings. We propose a simple framework for extracting a consistent clustering, given the various partitions in a clustering ensemble. According to the EAC concept, each partition is viewed as an independent evidence of data organization, individual data partitions being combined, based on a voting mechanism, to generate a new n /spl times/ n similarity matrix between the n patterns. The final data partition of the n patterns is obtained by applying a hierarchical agglomerative clustering algorithm on this matrix. We have developed a theoretical framework for the analysis of the proposed clustering combination strategy and its evaluation, based on the concept of mutual information between data partitions. Stability of the results is evaluated using bootstrapping techniques. A detailed discussion of an evidence accumulation-based clustering algorithm, using a split and merge strategy based on the k-means clustering algorithm, is presented. Experimental results of the proposed method on several synthetic and real data sets are compared with other combination strategies, and with individual clustering results produced by well-known clustering algorithms.  相似文献   

8.
A clustering ensemble combines in a consensus function the partitions generated by a set of independent base clusterers. In this study both the employment of particle swarm clustering (PSC) and ensemble pruning (i.e., selective reduction of base partitions) using evolutionary techniques in the design of the consensus function is investigated. In the proposed ensemble, PSC plays two roles. First, it is used as a base clusterer. Second, it is employed in the consensus function; arguably the most challenging element of the ensemble. The proposed consensus function exploits a representation for the base partitions that makes cluster alignment unnecessary, allows for the combination of partitions with different number of clusters, and supports both disjoint and overlapping (fuzzy, probabilistic, and possibilistic) partitions. Results on both synthetic and real-world data sets show that the proposed ensemble can produce statistically significant better partitions, in terms of the validity indices used, than the best base partition available in the ensemble. In general, a small number of selected base partitions (below 20% of the total) yields the best results. Moreover, results produced by the proposed ensemble compare favorably to those of state-of-the-art clustering algorithms, and specially to swarm based clustering ensemble algorithms.  相似文献   

9.
选择性聚类融合研究进展   总被引:1,自引:0,他引:1  
传统的聚类融合方法通常是将所有产生的聚类成员融合以获得最终的聚类结果。在监督学习中,选择分类融合方法会获得更好的结果,从选择分类融合中得到启示,在聚类融合中应用这种方法被定义为选择性聚类融合。对选择性聚类融合关键技术进行了综述,讨论了未来的研究方向。  相似文献   

10.
Recently, bias-variance decomposition of error has been used as a tool to study the behavior of learning algorithms and to develop new ensemble methods well suited to the bias-variance characteristics of base learners. We propose methods and procedures, based on Domingo's unified bias-variance theory, to evaluate and quantitatively measure the bias-variance decomposition of error in ensembles of learning machines. We apply these methods to study and compare the bias-variance characteristics of single support vector machines (SVMs) and ensembles of SVMs based on resampling techniques, and their relationships with the cardinality of the training samples. In particular, we present an experimental bias-variance analysis of bagged and random aggregated ensembles of SVMs in order to verify their theoretical variance reduction properties. The experimental bias-variance analysis quantitatively characterizes the relationships between bagging and random aggregating, and explains the reasons why ensembles built on small subsamples of the data work with large databases. Our analysis also suggests new directions for research to improve on classical bagging.  相似文献   

11.
Ensemble learning algorithms train multiple component learners and then combine their predictions. In order to generate a strong ensemble, the component learners should be with high accuracy as well as high diversity. A popularly used scheme in generating accurate but diverse component learners is to perturb the training data with resampling methods, such as the bootstrap sampling used in bagging. However, such a scheme is not very effective on local learners such as nearest-neighbor classifiers because a slight change in training data can hardly result in local learners with big differences. In this paper, a new ensemble algorithm named Filtered Attribute Subspace based Bagging with Injected Randomness (FASBIR) is proposed for building ensembles of local learners, which utilizes multimodal perturbation to help generate accurate but diverse component learners. In detail, FASBIR employs the perturbation on the training data with bootstrap sampling, the perturbation on the input attributes with attribute filtering and attribute subspace selection, and the perturbation on the learning parameters with randomly configured distance metrics. A large empirical study shows that FASBIR is effective in building ensembles of nearest-neighbor classifiers, whose performance is better than that of many other ensemble algorithms.  相似文献   

12.
侯勇  郑雪峰 《计算机应用》2013,33(8):2204-2207
当前流行的聚类集成算法无法依据不同数据集的不同特点给出恰当的处理方案,为此提出一种新的基于数据集特点的增强聚类集成算法,该算法由基聚类器的生成、基聚类器的选择与共识函数构成。该算法依据数据集的特点,通过启发式方法,选出合适的基聚类器,构建最终的基聚类器集合,并产生最终聚类结果。实验中,对ecoli,leukaemia与Vehicle三个基准数据集进行了聚类,所提出算法的聚类误差分别是0.014,0.489,0.479,同基于Bagging的结构化集成(BSEA)、异构聚类集成(HCE)和基于聚类的集成分类(COEC)算法相比,所提出算法的聚类误差始终最低;而在增加候基聚类器的情况下,所提出算法的标准化互信息(NMI)值始终高于对比算法。实验结果表明,同对比的聚类集成算法相比,所提出算法的聚类精度最高,可伸缩性最强。  相似文献   

13.
Machine Learning - Cluster ensembles or consensus clusterings have been shown to be better than any standard clustering algorithm at improving accuracy and robustness across various sets of data....  相似文献   

14.
Discovery of financial fraud has profound social consequences. Loss of stockholder value, bankruptcy, and loss of confidence in the professional audit firms have resulted from failure to detect financial fraud. Previous studies that have attempted to discover fraud patterns from publicly available information have achieved only moderate levels of success. This study explores the capabilities of recently developed statistical learning and data mining methods in an attempt to advance fraud discovery performance to levels that have potential for proactive discovery or mitigation of financial fraud. The partially adaptive methods we test have achieved success in a number of complex problem domains and are easily interpretable. Ensemble methods, which combine predictions from multiple models via boosting, bagging, or related approaches, have emerged as among the most powerful data mining and machine learning methods. Our study includes random forests, stochastic gradient boosting, and rule ensembles. The results for ensemble models show marked improvement over past efforts, with accuracy approaching levels of practical potential. In particular, rule ensembles do so while maintaining a degree of interpretability absent in the other ensemble methods.  相似文献   

15.
Given a clustering algorithm, how can we adapt it to find multiple, nonredundant, high-quality clusterings? We focus on algorithms based on vector quantization and describe a framework for automatic ‘alternatization’ of such algorithms. Our framework works in both simultaneous and sequential learning formulations and can mine an arbitrary number of alternative clusterings. We demonstrate its applicability to various clustering algorithms—k-means, spectral clustering, constrained clustering, and co-clustering—and effectiveness in mining a variety of datasets.  相似文献   

16.
This paper describes a novel feature selection algorithm for unsupervised clustering, that combines the clustering ensembles method and the population based incremental learning algorithm. The main idea of the proposed unsupervised feature selection algorithm is to search for a subset of all features such that the clustering algorithm trained on this feature subset can achieve the most similar clustering solution to the one obtained by an ensemble learning algorithm. In particular, a clustering solution is firstly achieved by a clustering ensembles method, then the population based incremental learning algorithm is adopted to find the feature subset that best fits the obtained clustering solution. One advantage of the proposed unsupervised feature selection algorithm is that it is dimensionality-unbiased. In addition, the proposed unsupervised feature selection algorithm leverages the consensus across multiple clustering solutions. Experimental results on several real data sets demonstrate that the proposed unsupervised feature selection algorithm is often able to obtain a better feature subset when compared with other existing unsupervised feature selection algorithms.  相似文献   

17.
Cluster ensemble first generates a large library of different clustering solutions and then combines them into a more accurate consensus clustering. It is commonly accepted that for cluster ensemble to work well the member partitions should be different from each other, and meanwhile the quality of each partition should remain at an acceptable level. Many different strategies have been used to generate different base partitions for cluster ensemble. Similar to ensemble classification, many studies have been focusing on generating different partitions of the original dataset, i.e., clustering on different subsets (e.g., obtained using random sampling) or clustering in different feature spaces (e.g., obtained using random projection). However, little attention has been paid to the diversity and quality of the partitions generated using these two approaches. In this paper, we propose a novel cluster generation method based on random sampling, which uses the nearest neighbor method to fill the category information of the missing samples (abbreviated as RS-NN). We evaluate its performance in comparison with k-means ensemble, a typical random projection method (Random Feature Subset, abbreviated as FS), and another random sampling method (Random Sampling based on Nearest Centroid, abbreviated as RS-NC). Experimental results indicate that the FS method always generates more diverse partitions while RS-NC method generates high-quality partitions. Our proposed method, RS-NN, generates base partitions with a good balance between the quality and the diversity and achieves significant improvement over alternative methods. Furthermore, to introduce more diversity, we propose a dual random sampling method which combines RS-NN and FS methods. The proposed method can achieve higher diversity with good quality on most datasets.  相似文献   

18.
Bagging, boosting, rotation forest and random subspace methods are well known re-sampling ensemble methods that generate and combine a diversity of learners using the same learning algorithm for the base-classifiers. Boosting and rotation forest algorithms are considered stronger than bagging and random subspace methods on noise-free data. However, there are strong empirical indications that bagging and random subspace methods are much more robust than boosting and rotation forest in noisy settings. For this reason, in this work we built an ensemble of bagging, boosting, rotation forest and random subspace methods ensembles with 6 sub-classifiers in each one and then a voting methodology is used for the final prediction. We performed a comparison with simple bagging, boosting, rotation forest and random subspace methods ensembles with 25 sub-classifiers, as well as other well known combining methods, on standard benchmark datasets and the proposed technique had better accuracy in most cases.  相似文献   

19.
聚类集成中的差异性度量研究   总被引:14,自引:0,他引:14  
集体的差异性被认为是影响集成学习的一个关键因素.在分类器集成中有许多的差异性度量被提出,但是在聚类集成中如何测量聚类集体的差异性,目前研究得很少.作者研究了7种聚类集体差异性度量方法,并通过实验研究了这7种度量在不同的平均成员聚类准确度、不同的集体大小和不同的数据分布情况下与各种聚类集成算法性能之间的关系.实验表明:这些差异性度量与聚类集成性能间并没有单调关系,但是在平均成员准确度较高、聚类集体大小适中和数据中有均匀簇分布的情况下,它们与集成性能间的相关度还是比较高的.最后给出了一些差异性度量用于指导聚类集体生成的可行性建议.  相似文献   

20.
Working as an ensemble method that establishes a committee of classifiers first and then aggregates their outcomes through majority voting, bagging has attracted considerable research interest and been applied in various application domains. It has demonstrated several advantages, but in its present form, bagging has been found to be less accurate than some other ensemble methods. To unlock its power and expand its user base, we propose an approach that improves bagging through the use of multi-algorithm ensembles. In a multi-algorithm ensemble, multiple classification algorithms are employed. Starting from a study of the nature of diversity, we show that compared to using different training sets alone, using heterogeneous algorithms together with different training sets increases diversity in ensembles, and hence we provide a fundamental explanation for research utilizing heterogeneous algorithms. In addition, we partially address the problem of the relationship between diversity and accuracy by providing a non-linear function that describes the relationship between diversity and correlation. Furthermore, after realizing that the bootstrap procedure is the exclusive source of diversity in bagging, we use heterogeneity as another source of diversity and propose an approach utilizing heterogeneous algorithms in bagging. For evaluation, we consider several benchmark data sets from various application domains. The results indicate that, in terms of F1-measure, our approach outperforms most of the other state-of-the-art ensemble methods considered in experiments and, in terms of mean margin, our approach is superior to all the others considered in experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号