首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of wheat flour fortification with two different molecular weight barley β-glucan isolates (1.00 × 105, BG-100 and 2.03 × 105, BG-200) on the rheological properties of dough and bread characteristics, using flours from two wheat cultivars that differ in their breadmaking quality, have been examined. The farinograph water absorption of doughs and the moisture content and water activity of the breads increased with increasing β-glucan content; the β-glucan isolate with the higher molecular weight (BG-200) exerted a greater effect than did BG-100. The addition of β-glucans to the dough formula increased the development time, the stability, the resistance to deformation and the extensibility of the poor breadmaking quality doughs, as well as the specific volumes of the respective breads, exceeding even that of the good breadmaking cultivar. Furthermore, the colour of the bread crumbs got darker and their structure became coarser, whereas the bread crumb firmness decreased with increasing level of β-glucan addition. Generally, the BG-200 was more effective in increasing the specific bread volume and reducing the crumb firmness, especially when used to fortify the poor breadmaking quality flour. The results further indicate a requirement for optimisation of the fortified doughs (level and molecular size of the β-glucan) to maximise bread quality attributes (loaf volume, texture, and staling events).  相似文献   

2.
Bread represents a suitable food product for the addition of functional ingredients, such as the cholesterol-lowering dietary fibre oat β-glucan and the prebiotic inulin. Therefore, these soluble fibres were incorporated into wheat as well as gluten-free bread, and their effects on rheological properties of the dough, on bread quality and on crumb microstructure were compared. The level of remaining β-glucan as well as its molecular weight was determined using an enzyme kit and size-exclusion chromatography. The addition of oat β-glucan resulted in a higher water addition level, whereas incorporation of inulin had the opposite effect. Rheological testing showed that the incorporation of oat β-glucan results in a more elastic dough. The baking characteristics mainly affected by fibre addition were volume and crust colour, with inulin increasing and oat β-glucan decreasing loaf-specific volume in the gluten-free breads. Inulin led to a darkening of the crust of both bread types, whereas addition of oat β-glucan resulted in a lighter crust of gluten-free bread. Oat β-glucan softened the crumb of gluten-free bread, but had the opposite effect on wheat bread. Inulin resulted in an increased crumb hardness as well as the rate of staling. Beta-glucan breakdown was more pronounced in wheat bread than in gluten-free bread. The results show that the use of β-glucan to increase the nutritional value of wheat bread is limited due to negative influences on technological properties. However, this soluble fibre is highly suitable for incorporation into gluten-free bread.  相似文献   

3.
Barley is a desirable food ingredient, with health benefits provided by a β-glucan fibre fraction. A hull-less barley flour and flakes were incorporated into white and wholegrain wheat bread in quantities usually applied in practice. The breads were evaluated for nutritional composition and sensory properties and compared to standard products as controls. The supplemented breads were high in fibre, zinc and selenium content. It was estimated that a 300-gram daily portion of such breads could meet up to 40% of dietary recommended intakes for selenium and 70–75% of recommended daily values for β-glucan. Regarding sensory quality, the only significant differences (p < 0.05) were higher taste and lower volume in the white supplemented breads and lower crumb elasticity in the white bread made with barley flour. Hull-less barley can substantially contribute to an adequate intake of selenium and β-glucan. In addition, supplemented breads were not found to pose a significant risk, with regard to excessive intakes of heavy elements (Pb, Cd, As).  相似文献   

4.
Soybean (full‐fat and defatted) and barley flours were incorporated into wheat flour at 5, 10, 15 and 20% substitution levels. The gluten content, sedimentation value and water absorption capacity of the flour blends and the mixing time of the dough decreased with increase in the level of soybean and barley flour separately and in combinations. Protein and glutelin contents increased significantly on blending of soyflour (full‐fat and defatted) to bread wheat flour. The breads prepared from the blends also varied in their loaf weight, loaf volume and sensory characteristics. The bread volume decreased with increasing amount of non‐wheat flour substitution. The crumb colour changed from creamish white to dull brown and a gradual hardening of crumb texture was observed as the addition of soybean (full‐fat and defatted) and barley flours increased. At the higher levels, the acceptability declined because of the compact texture of the crumb and the strong flavour of the product. The addition of 10% of soyflour (full‐fat and defatted) or 15% of barley flour, full‐fat soy + barley or defatted soy + barley flour to bread flour produced acceptable bread.  相似文献   

5.
D. Sabanis 《LWT》2009,42(8):1380-1389
The enrichment of gluten-free baked products with dietary fibre seems to be necessary since it has been reported that coeliac patients have generally a low intake of fibre due to their gluten-free diet. In the present study different cereal fibres (wheat, maize, oat and barley) were added at 3, 6 and 9 g/100 g level into a gluten-free bread formulation based on corn starch, rice flour and hydroxypropyl methyl cellulose (HPMC). Doughs were evaluated based on consistency, viscosity and thermal properties. Results showed that maize and oat fibre can be added to gluten-free bread with positive impact on bread nutritional and sensory properties. All breads with 9 g/100 g fibre increased the fibre content of control by 218%, but they were rated lower than those with 3 and 6 g/100 g fibre due to their powdery taste. The formulation containing barley fibre produced loaves that had more intense color and volume comparable to the control. During storage of breads a reduction in crumb moisture content and an increase in firmness were observed. The micrographs of the crumb showed the continuous matrix between starch and maize and/or oat fibre obtaining a more aerated structure.  相似文献   

6.
In the present work, gluten-free formulations for breadmaking, destined to celiac people, were studied. A base blend of tapioca starch and corn flour (80:20) and typical bread ingredients such as yeast, salt, sugar and water were utilised. Ingredients such us vegetable fat, hen egg, and soybean flour were incorporated in different levels by means of an experimental design of three factors. Bread quality was analysed throughout physical (specific volume, weight loss percentage) and textural (firmness, elasticity and firmness recovery) parameters. The optimum bread selected, the bread with highest levels of fat and soybean flour and one egg, presented low values of firmness (≤100 N) and elasticity (>65%) and the lowest variation of these parameters with storage. Overall acceptability of this bread was 84% for habitual consumers of wheat bread and 100% by celiac people. Therefore, tapioca starch-based breads with spongy crumb, high volume and a good sensory acceptance were obtained.  相似文献   

7.
A gluten-free wheat bread replacement was developed from rice flour (80%) and potato starch (20%). Using objective measurements as responses, response surface methodology was utilized to find carboxymethylcellulose (CMC)-hydroxypropylmethylcellulose (HPMC)-water combinations which could successfully replace gluten in the rice flour yeast breads from each of three rice flours. CMC and water had the greatest effect on the responses measured; HPMC had the least. Rice bread formulations were found that resulted in breads which met wheat (white) bread reference standards for specific volume, crumb and crust color, Instron firmness and % moisture.  相似文献   

8.
BACKGROUND: Waxy wheat, a new kind of genetically back‐crossed wheat, was applied to make whole bread in this study. Dough properties and bread quality of the whole waxy wheat flour, which was milled from 100% whole grains containing bran and germ, were determined. RESULTS: Whole waxy wheat had lower protein and lipid contents but higher dietary fiber content than whole regular wheat flour. Pasting temperature and viscosity of the whole waxy wheat flour were significantly lower than those of the whole regular wheat. However, the white wheat flour milled from wheat grains with 48% recovery had significantly higher peak viscosity than the whole waxy wheat. Bread made from the whole waxy wheat flour was significantly softer than that from the whole regular wheat flour during storage. However, bread made from whole waxy wheat had significantly lower specific volume than that from the white waxy flour because of the high amount of dietary fiber. Addition of cellulase increased paste viscosity, lowered dough mixing properties and reduced the firmness of the bread. The addition of pentosanase also increased paste viscosity, lowered dough mixing properties, improved loaf volume of bread but increased the firmness of breadcrumbs, while the addition of α‐amylase only increased final viscosity of flour and did not affect dough properties and bread qualities of whole waxy wheat flour. CONCLUSION: As a result, waxy wheat shows superior properties for making whole breads. Additional enzymes are also necessary to improve bread quality and nutritive values of whole waxy bread. Copyright © 2007 Society of Chemical Industry  相似文献   

9.
M. Siddiq  M. Nasir  M.S. Butt  J.B. Harte 《LWT》2009,42(2):464-470
Maize (Zea mays L.) processing produces large quantities of defatted maize germ (DMG) that is being used mainly for animal feed. The objective of this study was to exploit use of this nutrient-rich by-product in bread by replacing wheat flour at 5-20 g/100 g levels. Breads prepared with wheat-DMG flour blends were analyzed for loaf volume, density, instrumental dough hardness and bread firmness, Hunter color (“L”, “a”, “b”, chroma, and hue angle), and selected sensory attributes. Loaf volumes decreased significantly, from 318.8 ml to 216.3 ml, as the DMG flour supplementation was increased from 0 to 20 g/100 g; a similar effect was observed for bread specific volume. Increase in dough hardness (7.56-71.32 N) was directly related to increase in DMG flour levels. Instrumental firmness values were significantly higher for breads containing DMG flours, 61.58 N in 20 g/100 g DMG bread versus 32.84 N for the control bread, made with wheat flour only. The control bread was lighter in color, as shown by higher “L” values, than those having DMG flour, with chroma and hue angle values significantly higher in treatment breads. In general, no differences were observed for the sensory attributes of crumb color, cells uniformity, aroma, firmness, mouthfeel, and off-flavor in breads with up to 15 g/100 g DMG flour, while the overall acceptability scores showed a mixed pattern. The results of this study demonstrated that acceptable quality bread could be made with DMG flour addition at ≤15 g/100 g.  相似文献   

10.
Twenty flours from 16 different barley varieties cultivated in 1990 and 1992, and a Swedish reference flour, were fermented by Lactobacillus plantarum A1 to sour doughs. Barley breads (40% barley/60% wheat flour) from each flour type were baked with and without an admixture of barley sour dough in order to investigate how the sour dough admixture would affect the baking properties. A trained panel carried out sensory evaluation by conventional profiling on breads made from three of the barley varieties and the Swedish reference flour, made with and without sour dough admixture.

The barley varieties influenced both the sour dough properties and the properties of the barley bread. The pH of bread with sour dough ranged from 4.6 to 4.8 as compared to 5.4 to 5.6 in bread without sour dough. The acidity of the breads with sour dough ranged from 4.1 to 5.0 ml NaOH/ 10 g bread crumb as compared to 2.4 to 3.6 in breads without sour dough. In 14 of the twenty bread types an addition of sour dough lowered the bread volume. Breads with a sour dough admixture scored higher for total taste and acidulous taste than breads without sour dough. The β-glucan content of the flours had no significant influence on the sour dough or the sensory characteristics of the bread, except for the breadcrumb colour.  相似文献   


11.
The objective of this study was to create a probabilistic model to assess changes in the levels and molecular weight (Mw) of β-glucan during the bread baking process using Monte Carlo simulation techniques. Three different composite flours were formulated by substituting wheat flour (WF) with barley whole meal flour (BWMF), barley straight grade flour (BSGF) or barley fibre rich fraction (BFRF). The β-glucan level in the flour increased significantly (by approximately 10-fold) when barley was substituted for WF. The baking process resulted in approximately a 47–48% reduction in the β-glucan level in the baked bread (base-line model). The base-line model observed ∼25% and 7% reduction in high molecular weight (HMw) and medium molecular weight (MMw), respectively and a subsequent increase in low molecular weight (LMw). The analysis also showed the importance of various steps involved in bread baking, such as mixing time (Mt), fermentation time (Ft) and baking (BGloss), on the level and Mw of β-glucan in baked breads. A parallel experimental validation study provided confidence in model predictions of β-glucan levels. This study aids in optimising the various unit operations involved in the bread baking process to give a final product with increased nutritional qualities.  相似文献   

12.
The impact of addition of gelatinized rice porridge to bread has been investigated on loaf volume, viscoelastic properties and air-bubble structure. We prepared four variety of bread: bread containing rice porridge (rice porridge bread), bread containing gelatinized rice flour (gelatinized rice flour bread), and wheat flour and rice flour breads for references. Instrumental analyses the bread samples were carried out by volume measurement of loaf samples, creep test and digital image analysis of crumb samples. Rice porridge bread showed the maximum specific volume of 4.51 cm3/g, and even gelatinized rice flour bread showed 4.30 cm3/g, which was larger than the reference bread samples (wheat and rice flour breads). The values of viscoelastic moduli of gelatinized rice flour bread and rice porridge bread were significantly smaller (p < 0.05) than those of wheat flour and rice flour breads, which indicates addition of gelatinized rice flour or rice porridge to bread dough encouraged breads softer. Bubble parameters such as mean air- bubble area, number of air-bubble, air-bubble area ratio (ratio of bubble area to whole area) were not significantly different among the bread crumb samples. Therefore, the bubble structures of the bread samples seemed to similar, which implied that difference of viscoelasticity was attributed to air-bubble wall (solid phase of bread crumb) rather than air-bubble. This study showed that addition of gelatinized rice to bread dough makes the bread with larger loaf volume and soft texture without additional agents such as gluten.  相似文献   

13.
ABSTRACT: Cereal β-glucan is regarded as a soluble dietary fiber, which has potential nutritional benefits within the food industry. This article explores the possibility of using a β-glucan rich fraction (BGF) extract from barley ( Hordeum vulgare ) in bread products. BGF was incorporated into bread mixes at 2.5% and 5% inclusion rates. Analysis of the pasting characteristics of BGF and wheat flour mixes revealed a decrease in peak and final viscosity related to the level of BGF addition. Dough extendibility increased with addition of 5% BGF compared with the control, probably because of the weak gel-forming capability of β-glucan, creating an elastic dough. However, loaf volume and height decreased with the addition of BGF. Analysis of the bread samples illustrated that 5% BGF inclusion resulted in a significant decrease in the release of reducing sugars over a 300-min digestion, compared with the control bread sample. The results showed a potential for the use of low levels of β-glucan to improve the nutritional quality of bread products.  相似文献   

14.
The beneficial health effects of β-glucan, a major non-starch polysaccharide in barley, have become the focus of much attention in recent years, with the incorporation of barley fractions into baked products being a growing area in the development of healthier food products. In this study, flour formulations, doughs and breads were produced using the “middling” fraction (M) of wholegrain (WM) and pearled (PM) barley in different ratios (15%, 30%, 45% and 60% middlings with wheat flour). A 100% wheat formulation was used as a control. The protein content differed significantly (P < 0.01) between formulations (i.e. the amount of barley middlings substituted for flour) but did not differ significantly between WM and PM formulations of the same inclusion level. Starch pasting properties were significantly affected by the increased inclusion of barley middlings (BM) into the formulation. Fundamental dough rheology of the samples also showed significant differences between doughs made from different BM levels, with doughs containing BM having increased firmness, decreased resistance to extension and decreased elasticity. Bread quality was not significantly affected by the addition of up to 30% BM, the loaf volume and textural properties in particular of breads up to 30% BM inclusion were of a suitable standard when compared to the control. Both fibre and β-glucan content of the breads was increased significantly with the inclusion of BM; inclusion of BM at a 30% level increased the fibre and β-glucan contents, respectively.  相似文献   

15.
High levels of soy flour added to wheat bread produce negative effects on gluten network formation, dough properties, and on bread final quality. The objective of this study was to assess the influence of three enzymes, transglutaminase (TG), glucose oxidase (GOX), and endoxylanase (XYL), on dough properties and final quality of high-protein breads. The addition of TG and GOX increased the mixing stability and maximum resistance of dough, decreased its extensibility, and produced stronger and more consistent dough samples. XYL incorporation produced opposite results. XYL addition and the lowest GOX dose increased bread volume significantly and decreased initial crumb firmness, while high doses of TG (0.3%) produced detrimental effects on bread volume and crumb firmness. In conclusion, XYL and GOX 0.001% addition improved the final quality of soy-fortified breads, but XYL was the best additive to improve dough properties, bread volume, and quality.  相似文献   

16.
The effect of different enriched fibre products obtained from butternut (Cucurbita moschata Duchesne ex Poiret) on bread making and bread quality was evaluated through the study of bread yield, quality parameters (specific volume, crumb firmness, crumb and crust colour) and bread shelf life. Fractions tested were obtained from butternut mesocarp through ethanolic treatment (fraction AIR) or through dehydration (fraction S) or from the ethanolic treatment of peel (fraction C). These fractions were incorporated in a bread formula, at levels of 5, 10 and 15 g of fibre fraction per kilogram of wheat flour. The study of crumb through digital imaging and thermal analysis was also performed in order to better understand the effects observed. An important influence of water absorption kinetics and chemical composition of the fibre fractions studied was observed in the results obtained. Lower bread firmness was determined 24 h after baking when 10 g of C or either 10 or 15 g of S was present per kilogram of wheat flour used. Breads made with flour containing 10–15 g of S or 5 g of C per kilogram of wheat flour tended to be softer, while 10 g of C per kilogram of flour produced significantly softer breads along 9 days storage.  相似文献   

17.
The effects of the addition of chickpea (Cicer arietinum), emulsifier and altered amount of water on the functional properties (bread volume, colour of crust, crumb texture and crumb porosity) of white and whole wheat bread were investigated applying a screening three factorial design. Addition of chickpea increased crumb firmness and slightly decreased bread volume in both bread types. Addition of emulsifier increased bread volume and decreased bread firmness. Altering the amount of water addition had no significant effects on white bread, but decreased crumb firmness and increased bread volume in whole wheat bread. None of the investigated parameter had an effect of whole wheat bread colour, while in white bread chickpea addition increased darkness and yellowness of the bread. Optimum addition for breads of highest quality would be 56.9–58% water, 1.0% emulsifier and 10.0–16.0% chickpea in white bread and 58% water, 1.0% emulsifier and 11.8% chickpea in whole wheat bread.  相似文献   

18.
Barley has long been known as a good source of fibre and in particular beta-glucan, but increased consumer awareness has meant that this is only now being exploited by food scientists and the food industry. In this study, doughs and breads were produced using pearled barley flour (PBF) in different ratios (30, 50, 70 and 100%) to wheat flour. A 100% wheat flour formulation was used as a control. The flour formulations were evaluated for protein content; the dough rheological properties of the formulations were evaluated using fundamental oscillatory tests and uniaxial extension tests. The baked breads were evaluated for volume, texture, moisture, dietary fibre and beta-glucan. Digital image analysis of the crumb grain was also carried out. Protein analysis revealed that increasing the amount of PBF in the formulation leads to a significant (p < 0.001) decrease in the protein content of the formulation. Starch pasting properties were also affected by an increase in PBF concentration, with an increase in PBF significantly increasing the peak viscosity, breakdown, setback and final viscosity of the starch slurries of the formulations. Extensional rheology revealed that increasing the PBF in the doughs leads to the doughs rupturing at lower extensions and with a lower force. Bread volume between treatments was found to be significantly (p ≤ 0.001) different, with an increase in PBF inclusion leading to smaller loaves. Texture profile analysis of the bread slices showed that breads containing higher ratios of PBF had a significantly harder (p ≤ 0.001) and less cohesive (p ≤ 0.001) crumb. Low levels of PBF (≤50%) did not significantly effect loaf volume or crumb texture, however, and the total dietary fibre and beta-glucan levels of the loaves were significantly increased (p ≤ 0.001) with increasing levels of PBF in the formulation, even at low levels of inclusion.  相似文献   

19.
Normal and heat-treated barley, both as flour and waxy starch, were added at a concentration of 3% to a white wheat bread. The effect not only of selected additives, but also of laboratory- and industrial baking processes on stalling was evaluated. Laboratory baked breads with heat-treated barley flour differed from control breads with regard to water content, firmness and amylopectin retrogradation. The influence of water content on firmness increased with storage time. All laboratory baked breads with barley additives, except normal barley flour, were less firm after 7 days of storage as compared to the control although amylopectin retrogradation tended to increase. Improved water absorption, and consequently, increased water content and/or different water binding capacities of the flour/starch could explain these results. Industrial baking caused higher water losses, especially in breads containing additives, thus reducing the effects on amylopectin retrogradation and firmness.  相似文献   

20.
《Food chemistry》2002,77(4):479-488
Supplementations of soy (full fat and defatted) and barley flours to wheat flours at 5, 10, 15 and 20% levels were carried out to test the effects on organoleptic and nutritional evaluation of the supplemented bread. Additions of 15% barley flour, 10% soy flour (full fat and defatted), 15% barley plus full fat soy flour and 15% barley plus defatted soy flour to wheat flour produced acceptable breads. However, substitution of soy (full fat and defatted) and barley flours to wheat flour separately and in combinations at 20% levels did not produce organoleptically acceptable bread. Various nutritional parameters, such as protein, fat, total lysine, protein digestibility (in vitro), sugars, starch digestibility (in vitro), total and available minerals, antinutrients, dietary fibre and β-glucan were determined in supplemented and control bread. Increasing the level of substitution from 5 to 10% of full fat and defatted soy flour to wheat flour significantly (P<0.05) increased protein (from 12.1 to 13.7 and 12.4 to 13.8%), lysine (from 2.74 to 3.02 and 2.76–3.05 mg/100 g protein) and total calcium (from 70.2 to 81.4 and 71.9–81.8 mg/100 g) contents. However, there was also an increase in phytic acid (238–260 and 233–253 mg/100 g), polyphenol (324–331 and 321–329 mg/100 g) and trypsin inhibitor activity (193–204 and 193–198 TIU/g). When barley flour was substituted separately, and in combinations, with full fat and defatted soy flour up to 15%, this significantly increased the contents of protein, total lysine, dietary fibre and β-glucan. It may be concluded that breads supplemented with barley and defatted soy flour, up to a 15% level, are organoleptically and nutritionally acceptable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号