共查询到20条相似文献,搜索用时 0 毫秒
1.
With a focused continuous-wave CO(2) Doppler lidar at 9.1-mum wavelength, the superposition of backscatter from two ~14.12-mum-diameter silicone oil droplets in the lidar beam produced interference that resulted in a single backscatter pulse from the two droplets with a distinct periodic structure. This interference is caused by the phase difference in backscatter from the two droplets while they are traversing the lidar beam at different speeds, and thus the droplet separation is not constant. The complete cycle of interference, with periodicity 2pi, gives excellent agreement between measurements and lidar theory. 相似文献
2.
Airborne CO(2) coherent lidar for measurements of atmospheric aerosol and cloud backscatter 总被引:1,自引:0,他引:1
An airborne CO(2) coherent lidar has been developed and flown on over 30 flights of the NASA DC-8 research aircraft to obtain aerosol and cloud backscatter and extinction data at a wavelength near 9μm. Designed to operate in either zenith- or nadir-directed modes, the lidar can be used to measure vertical profiles of backscatter throughout the vertical extent of the troposphere and the lower stratosphere. Backscatter measurements in absolute units are obtained through a hard-target calibration methodology. The use of coherent detection results in high sensitivity and narrow field of view, the latter property greatly reducing multiple-scattering effects. Aerosol backscatter profile intercomparisons with other airborne and ground-based CO(2) lidars were conducted during instrument checkout flights over the NASA Ames Research Center before extended depolyment over the Pacific Ocean. Selected results from data taken during the flights over the Pacific Ocean are presented, emphasizing intercom arisons with backscatter profile data obtained at 1.06 μm with a NASA Goddard Space Flight Center Nd:YAG lidar on the same flights. 相似文献
3.
4.
We present a sequential algorithm for estimating both concentration dependence on range and time and backscatter coefficient spectral dependence of optically thin localized atmospheric aerosols using data from rapidly tuned lidar. The range dependence of the aerosol is modeled as an expansion of the concentration in an orthonormal basis set whose coefficients carry the time dependence. Two estimators are run in parallel: a Kalman filter for the concentration range and time dependence and a maximum-likelihood estimator for the aerosol backscatter wavelength and time dependence. These two estimators exchange information continuously over the data-processing stream. The state model parameters of the Kalman filter are also estimated sequentially together with the concentration and backscatter. Lidar data collected prior to the aerosol release are used to estimate the ambient lidar return. The approach is illustrated on atmospheric backscatter long-wave infrared (CO2) lidar data. 相似文献
5.
6.
The potential to estimate solar aerosol radiative forcing (SARF) in cloudless conditions from backscatter data measured by widespread standard lidar has been investigated. For this purpose 132 days of sophisticated ground-based Raman lidar observations (profiles of particle extinction and backscatter coefficients at 532 nm wavelength) collected during two campaigns [the European Aerosol Research Lidar Network (EARLINET) and the Indian Ocean Experiment (INDOEX)] were analyzed. Particle extinction profiles were used as input for radiative transfer simulations with which to calculate the SARF, which then was plotted as a function of the column (i.e., height-integrated) particle backscatter coefficient (beta(c)). A close correlation between the SARF and beta(c) was found. SARF-beta(c) parameterizations in the form of polynomial fits were derived that exhibit an estimated uncertainty of +/-(10-30)%. These parameterizations can be utilized to analyze data of upcoming lidar satellite missions and for other purposes. The EARLINET-based parameterizations can be applied to lidar measurements at mostly continental, highly industrialized sites with limited maritime influence (Europe, North America), whereas the INDOEX parameterizations rather can be employed in polluted maritime locations, e.g., coastal regions of south and east Asia. 相似文献
7.
Yue GK 《Applied optics》2000,39(30):5446-5455
A new approach for retrieving aerosol properties from extinction spectra is extended to retrieve aerosol properties from lidar backscatter measurements. In this method it is assumed that aerosol properties are expressed as a linear combination of backscatters at three or fewer wavelengths commonly used in lidar measurements. The coefficients in the weighted linear combination are obtained by minimization of the retrieval error averaged for a set of testing size distributions. The formulas can be used easily by investigators to retrieve aerosol properties from lidar backscatter measurements such as the Lidar In-Space Technology Experiment and Pathfinder Instruments for Clouds and Aerosols Spaceborne Observations. 相似文献
8.
9.
10.
Jarzembski MA Srivastava V 《Journal of the Optical Society of America. A, Optics, image science, and vision》2000,17(10):1840-1845
Vibrational motion of a harmonic oscillator was investigated with a focused continuous-wave (cw) CO2 Doppler lidar at 9.1-microm wavelength. A continuum of frequencies along with many discrete, equally spaced, resonant frequency modes was observed. The frequency modes are similar in structure to the oscillatory longitudinal modes of a laser cavity and arise because of interference of the natural resonant frequency of the oscillator with specific frequencies within the continuum. Each consecutive resonant frequency mode occurred for a movement of the oscillator much less than the wavelength of incident lidar radiation. For vigorous vibration of the oscillator, the observed spectra may be indicating nonlinear motion. 相似文献
11.
The antenna and the Doppler estimation characteristics of a coherent pulsed lidar intended for short-range aerosol backscatter applications have been analyzed. The system used fiber-optic interconnects and operated at a wavelength of 1.548 microm. The range dependence of the signal for various bistatic and monostatic antenna configurations has been determined. The system operated in a low-pulse-energy, high-pulse-repetition-rate mode, and the Doppler estimates from the return signal were achieved with a multipulse accumulation procedure. The expected performance of the accumulation in this low-photocount regime was compared with the data obtained from the system, and a reasonable level of agreement was demonstrated. 相似文献
12.
Rothermel J Chambers DM Jarzembski MA Srivastava V Bowdle DA Jones WD 《Applied optics》1996,35(12):2083-2095
Two continuous-wave (CW) focused CO(2) Doppler lidars (9.1 and 10.6 μm) were developed for airborne in situ aerosol backscatter measurements. The complex path of reliably calibrating these systems, with different signal processors, for accurate derivation of atmospheric backscatter coefficients is documented. Lidar calibration for absolute backscatter measurement for both lidars is based on range response over the lidar sample volume, not solely at focus. Both lidars were calibrated with a new technique using well-characterized aerosols as radiometric standard targets and related to conventional hard-target calibration. A digital signal processor (DSP), a surface acoustic wave spectrum analyzer, and manually tuned spectrum analyzer signal analyzers were used. The DSP signals were analyzed with an innovative method of correcting for systematic noise fluctuation; the noise statistics exhibit the chi-square distribution predicted by theory. System parametric studies and detailed calibration improved the accuracy of conversion from the measured signal-to-noise ratio to absolute backscatter. The minimum backscatter sensitivity is ~3 × 10(-12) m(-1) sr(-1) at 9.1 μm and ~9 × 10(-12) m(-1) sr(-1) at 10.6 μm. Sample measurements are shown for a flight over the remote Pacific Ocean in 1990 as part of the NASA Global Backscatter Experiment (GLOBE) survey missions, the first time to our knowledge that 9.1-10.6-μm lidar intercomparisons were made. Measurements at 9.1 μm, a potential wavelength for space-based lidar remote-sensing applications, are to our knowledge the first based on the rare isotope (12)C (18)O(2) gas. 相似文献
13.
Pappalardo G Amodeo A Pandolfi M Wandinger U Ansmann A Bösenberg J Matthias V Amiridis V De Tomasi F Frioud M Larlori M Komguem L Papayannis A Rocadenbosch F Wang X 《Applied optics》2004,43(28):5370-5385
An intercomparison of the algorithms used to retrieve aerosol extinction and backscatter starting from Raman lidar signals has been performed by 11 groups of lidar scientists involved in the European Aerosol Research Lidar Network (EARLINET). This intercomparison is part of an extended quality assurance program performed on aerosol lidars in the EARLINET. Lidar instruments and aerosol backscatter algorithms were tested separately. The Raman lidar algorithms were tested by use of synthetic lidar data, simulated at 355, 532, 386, and 607 nm, with realistic experimental and atmospheric conditions taken into account. The intercomparison demonstrates that the data-handling procedures used by all the lidar groups provide satisfactory results. Extinction profiles show mean deviations from the correct solution within 10% in the planetary boundary layer (PBL), and backscatter profiles, retrieved by use of algorithms based on the combined Raman elastic-backscatter lidar technique, show mean deviations from solutions within 20% up to 2 km. The intercomparison was also carried out for the lidar ratio and produced profiles that show a mean deviation from the solution within 20% in the PBL. The mean value of this parameter was also calculated within a lofted aerosol layer at higher altitudes that is representative of typical layers related to special events such as Saharan dust outbreaks, forest fires, and volcanic eruptions. Here deviations were within 15%. 相似文献
14.
Tropospheric height profiles of five particle backscatter coefficients between 355 and 800 nm and particle extinction coefficients at 355 and 532 nm measured with a multiple-wavelength backscatter lidar and a dual-wavelength Raman lidar are presented. From these data microphysical particle parameters are determined by a specifically designed inversion algorithm. 相似文献
15.
Lidar backscatter from clouds in the Delft University of Technology experiment is complicated by the fact that the transmitter has a narrow beam width, whereas the receiver has a much wider one. The issue here is whether reception of light scattered incoherently by cloud particles can contribute appreciably to the received power. The incoherent contribution can come from within as well as from outside the transmitter beam but in any case is due to at least two scattering processes in the cloud that are not included in the coherent forward scatter that leads to the usual exponentially attenuated contribution from single-particle backscatter. It is conceivable that a sizable fraction of the total received power within the receiver beam width is due to such incoherent-scattering processes. The ratio of this contribution to the direct (but attenuated) reflection from a single particle is estimated here by means of a distorted-Born approximation to the wave equation (with an incident cw monochromatic wave) and by comparison of the magnitude of the doubly scattered to that of the singly scattered flux. The same expressions are also obtained from a radiative-transfer formalism. The ratio underestimates incoherent multiple scattering when it is not small. Corrections that are due to changes in polarization are noted. 相似文献
16.
We present an approach to estimating the multiple-scattering (MS) contribution to lidar return signals from clouds recorded from space that enables us to describe in more detail the return formation at the depth where first orders of scattering dominate. Estimates made have enabled us to propose a method for correcting solutions of single-scattering lidar equations for the MS contribution. We also describe an algorithm for reconstructing the profiles of the cloud scattering coefficient and the optical thickness tau under conditions of a priori uncertainties. The approach proposed is illustrated with results for optical parameters of cirrus and stratiform clouds determined from return signals calculated by the Monte Carlo method as well as from return signals acquired with the American spaceborne lidar during the Lidar In-Space Technology Experiment (LITE). 相似文献
17.
18.
A flash-lamp-pumped Er:Cr:YSGG laser at 2.79-mum wavelength has been acousto-optically Q switched. The Q-switched pulse energy and duration depend on pump pulse level and relative Q-switching time. Limits of single-pulse operation with the given acousto-optic diffraction efficiency have been determined. Resonator length, position of the Q switch, and output mirror reflectivity have been varied to obtain high pulse energy and the shortest pulse duration in the TEM(00) transverse laser mode. A maximum single-pulse energy of 27 mJ and a minimum pulse duration of 120 ns were obtained with an output mirror reflectivity of approximately 25%. The highest Q-switched single-pulse energy amounted to 52% of the free-running, fundamental mode output pulse energy. 相似文献
19.
Ben-David A 《Applied optics》1999,38(12):2616-2624
The volume backscattering coefficients of atmospheric aerosol were measured with a tunable CO2 lidar system at various wavelengths in Utah (a desert environment) along a horizontal path a few meters above the ground. In deducing the aerosol backscattering, a deconvolution (to remove the smearing effect of the long CO2 lidar pulse and the lidar limited bandwidth) and a constrained-slope method were employed. The spectral shape beta(lambda) was similar for all the 13 measurements during a 3-day period. A mean aerosol backscattering-wavelength dependence beta(lambda) was computed from the measurements and used to estimate the error Delta(CL) (concentration-path-length product) in differential-absorption lidar measurements for various gases caused by the systematic aerosol differential backscattering and the error that is due to fluctuations in the aerosol backscattering. The water-vapor concentration-path-length product CL and the average concentration C = /L for a path length L computed from the range-resolved lidar measurements is consistently in good agreement with the water-vapor concentration measured by a meteorological station. However, I was unable to deduce, reliably, the range-resolved water-vapor concentration C(r), which is the derivative of the range-dependent product CL, because of the effect of residual noise caused mainly by errors in the deconvolved lidar measurements. 相似文献
20.
Significance of multiple scattering from tropospheric aerosols for ground-based backscatter lidar measurements 总被引:1,自引:0,他引:1
The influence of multiple scattering on the retrieval of extinction coefficients of tropospheric aerosols from ground-based backscatter lidar measurements is numerically modeled. In a first step, lidar returns are computed by means of a Monte Carlo code for model atmospheres with different aerosol types and different extinction coefficient profiles. In so doing, synthetic lidar signals with and without multiple scattering can be simulated. In a second step, both types of signal are inverted by the most frequently used analytical solution, which, however, is based on the single-scatter assumption. From a comparison of the results, the error of the retrieved aerosol-extinction profiles can be quantitatively determined. It was found that the contribution of multiply scattered photons to the lidar signals is typically below 10% and never exceeds 20%. The relative errors of the retrieved aerosol-extinction profile in the planetary boundary layer are still smaller; they were determined to be less than 3% for all aerosol types, even for extinction coefficients as large as 3.9 km(-1). Thus, for ground-based lidar measurements and typical meteorological conditions, errors caused by neglecting multiple scattering are by far less significant than other errors in lidar data evaluation. 相似文献