首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To decrease the interference to the primary user (PU) and improve the detected performance of cognitive radio (CR), a single‐band sensing scheme wherein the CR periodically senses the PU by cooperative spectrum sensing is proposed in this paper. In this scheme, CR first senses and then transmits during each period, and after the presence of the PU is detected, CR has to vacate to search another idle channel. The joint optimization algorithm based on the double optimization is proposed to optimize the periodical cooperative spectrum sensing scheme. The maximal throughput and minimal search time can be respectively obtained through the joint optimization of the local sensing time and the number of the cooperative CRs. We also extend this scheme to the periodical wideband cooperative spectrum sensing, and the joint optimization algorithm of the numbers of the sensing time slots and cooperative CRs is also proposed to obtain the maximal throughput of CR. The simulation shows that the proposed algorithm has lower computational quantity, and compared with the previous algorithms, when SNR = 5 dB, the throughput and search time of the proposed algorithm can respectively improve 0.3 kB and decrease 0.4 s. The simulation also indicates that the wideband cooperative spectrum sensing can achieve higher throughput than the single‐band cooperative spectrum sensing. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
Cooperative energy spectrum sensing has been proved effective to detect the spectrum holes in Cognitive Radio (CR). However, its performance may suffer from the noise uncertainty, which is portrayed by the SNR wall in some literatures. In this paper we analyze the spectrum sensing performance under noise uncertainty and find an alternative approach to obtain the SNR wall. Then the average SNR wall is proposed to illustrate the statistically average impact of noise uncertainty. In addition, the cooperative sensing performance under noise uncertainty with AND rule is discussed. Analyses and numerical results show that cooperative sensing can significantly improve the sensing performance under the condition of noise uncertainty.  相似文献   

3.
本文研究了全双工中继协作下的认知MIMO系统的平均吞吐量最大化问题。与传统的中继协作认知无线电系统不同的是,该系统模型中的双工中继节点既能协助认知用户源节点进行多天线频谱感知以提高频谱检测性能,也能解码转发认知用户源节点的发送信号以获得更大的系统吞吐量。为使系统平均吞吐量最大,首先,本文以认知用户能获得的最大平均频谱空洞被发现的概率为目标,对系统的帧结构进行优化以获得最佳的感知时间,接着对多个发送天线进行优化以选择出最佳的发送天线,并推导出了在总的发送功率和对主用户干扰受限条件下的认知用户源节点和双工中继节点的最佳功率分配方案。最后的仿真结果表明本文提出的系统模型和优化方案相比传统的双工等功率分配方案以及单工功率分配方案能够获得更大的系统平均吞吐量。   相似文献   

4.

Owing to the spectrum scarcity and energy constrained devices in wireless networks arises the demand for an efficient spectrum sensing technique which improves both sensing performance and energy efficiency for cognitive radio networks. This paper proposes a cooperative spectrum sensing scheduling (CSSS) scheme for heterogeneous multi-channel cognitive radio networks with the objective of finding an efficient sensing schedule to enhance network utility while keeping the energy depletion at a lower level. We start with formulating the CSSS problem as an optimization problem, which captures both the energy-performance and performance opportunity trade-offs. We prove that the formulated CSSS problem is non-deterministic polynomial hard (NP-hard). To tackle the higher computational complexity of the formulated problem, we propose a greedy-based heuristic solution, which produces a sub-optimal result in polynomial time. To reduce energy consumption during spectrum sensing, we make secondary users to adaptively decide on the sensing duration based on the received signal-to-noise ratio (SNR), where higher SNR leads to lower sensing duration and vice-versa. For enhancing network throughput, SUs sense multiple channels in the order of their suitability for data transmission to explore as many numbers of channels as possible within the permitted maximum sensing time. We consider erroneous nature of reporting channel to make the cooperative decision robust against errors during reporting. Simulation based results show the effectiveness of the proposed scheme in terms of utility, energy overhead, and the number of channels explored compared to similar schemes from literature.

  相似文献   

5.
Cooperative spectrum sensing, a kind of spectrum sensing scheme in cognitive radio (CR), uses multiple CR relays. To increase performance, this study uses multi‐antenna CR relays and beam‐forming reception. The required bandwidth for reporting channels in cooperative spectrum sensing is crucial. Two‐stage cooperative spectrum sensing is proposed to increase performance without increasing the required bandwidth. The cooperative spectrum sensing is also optimized to allow the CR networks to facilitate the best decision‐making. This study determines the detection performance when beam‐forming reception is used. Numerical simulations are used to validate the effectiveness of the method. It is shown that beam‐forming reception outperforms square‐law combining (SLC) for low SNR values. This study proposes a 2‐stage cooperative spectrum sensing method, which uses multi‐antenna CR relays and beam‐forming reception. The cooperative spectrum sensing is also optimized to allow the CR networks to facilitate the best decision‐making. Numerical simulations are used to validate the effectiveness of the method.  相似文献   

6.
Under the energy detection scheme based cognitive radio (CR) system, the process of spectrum sensing is of high importance. The sensing performance of CR primarily depends on two important parameters namely, the sensing time τ and the reference threshold λ. In order to achieve a goal where the CR system obtains a high value of throughput and simultaneously ensures a sufficient level of protection to the licensed users, the values of these parameters can neither be too high nor too low, so proper settings of their values is of prime concern. However, under these constraints on choosing a particular value of τ and λ, it is challenging for CR to fulfill this goal. In this paper we propose a CR system which operates under the scheme of double threshold to ensure a sufficient protection required by the licensed users and also makes an efficient utilization of the confusion region to improve its achievable throughput. It is observed that, under the proposed approach, the CR system achieves better throughput than the CR system based on the single threshold and also to the conventional double threshold based CR system where confusion region is used based on the results of sensing performed in the next sensing rounds. We further study the problem of optimizing the sensing duration to maximize the throughput of the proposed CR system. We formulate the sensing-throughput tradeoff problem mathematically and prove that, the formulated problem indeed has an optimal sensing duration where throughput of the CR system is maximized.  相似文献   

7.

Full-duplex cognitive radio (CR) is a promising technology for upcoming 5G wireless communication systems. This paper presents a robust fast Fourier transform (FFT) based multiband spectrum sensing using two-dimensional averaging algorithms in orthogonal frequency division multiplexing systems in full-duplex CR networks with residual self interference under Rayleigh flat fading scenario. In the proposed algorithm, we have used modified Daniell windowing technique both in time and frequency dimensions to smoothen the FFT spectrum under full-duplex scenario. The analytical expressions for the performance metrics are derived for the aforementioned algorithm. The simulated and analytical results, obtained for the proposed algorithm using modified Daniell windowing technique are found in good agreement. Finally, the comparison studies between the proposed scheme using modified Daniel windowing technique and the conventional rectangular windowing scheme clearly depict that the proposed scheme gives optimal performance even at low SNR using fewer filter lengths in time and frequency dimensions as the modified Daniell windowing algorithm is less influenced due to spectral leakage.

  相似文献   

8.
Adding the cognitive capability to wireless sensor networks allows the sensors to monitor the spectrum and identify the spectrum holes to operate in different frequencies according to the radio environment which result in better spectrum utilization. Spectrum sensing is a main component in any cognitive radio network. In this paper, we propose a new cooperative sensing scheme based on energy detection for cognitive sensor networks which is constrained by the energy limitation of the wireless sensor elements. The proposed scheme minimizes the sensing energy for individual sensor and carefully selects the suitable participant sensors in each cooperative sensing process. This results in maximizing the lifetime of energy‐constrained wireless sensor networks. The proposed scheme also takes into consideration the constraints on the detection accuracy. The simulation results show that the proposed scheme prolonged the lifetime of the cognitive network, makes efficient usage of available spectrum by secondary users, and satisfy the target detection performance.  相似文献   

9.
Cognitive radio (CR) is a newly developed technology for increasing spectral efficiency in wireless communication systems. In the CR networks, there exist two traditional spectrum‐sharing technologies called spectrum overlay and spectrum underlay. A new hybrid overlay/underlay paradigm has also been discussed in the literature. In this work, we create a unified spectrum sensing and throughput analysis model, which is suitable for overlay, underlay, and hybrid overlay/underlay paradigms in the CR networks. In the proposed model, the energy detection scheme is employed for the spectrum sensing in the network in which the co‐channel interference is present among primary users and secondary users (SUs). The SUs' throughput in the proposed CR system model is then analyzed. The simulations are also carried out for demonstrating the performance of overlay, underlay, and hybrid overlay/underlay paradigms. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Cooperative spectrum sensing (CSS) is an approach to confront fading environment. However, in conventional cooperative spectrum sensing (CCSS), the difference among the secondary users (SUS) is ignored when SUS suffer from different fading. In this article, a signal-to-noise ratio (SNR)-based weighted spectrum sensing scheme is proposed to improve the sensing performance. The sensing performance of the weighted spectrum sensing scheme is then derived. Considering the minor contribution of the SUS with small weighted factor, a selective CSS scheme is proposed, where SUS with low SNR are not selected into cooperative spectrum sensing. The simulation results confirm the analytical results. And the performance of weighted scheme is better than that of conventional schemes. In the case where the SNR of SUS are randomly distributed, the performance of selective scheme is almost the same as the weighted scheme while the number of cooperative SUS is reduced to save the consumption of system resource in cooperation with little additional complexity.  相似文献   

11.
Cooperative spectrum sensing has emerged as a promising solution to the hidden terminal problem in cognitive radio networks (CRNs). It could significantly promote the sensing capability of CRNs by exploiting space diversity gains in a fading environment. However, owing to the decision reporting overhead, there exists a tradeoff between the system throughput and performance of cooperative spectrum sensing. In this paper, we propose a cyclostationarity-based decision reporting scheme for cooperative spectrum sensing in CRNs with cyclic delay diversity orthogonal frequency division multiplexing (CDD-OFDM). Decision information would be embedded into the CDD-OFDM signals in terms of cyclostationary signatures and shared among cognitive radio (CR) users along with data transmissions. As a result, satisfied system throughput could be achieved without additional spectral or temporal resources consumption when the number of cooperative users increases. Numerical results are presented to show the system throughput enhancement.  相似文献   

12.
认知无线电技术可有效地检测到授权频段的频谱空洞,从而提高频谱效率.能量检测由于不需要授权用户的先验信息而被广泛应用.然而由于接收的噪声存在不确定性,使得在信噪比低于某一闸值时,无论观测时间多长,都无法保证检测结果满足要求的检测性能,这一闸值被称作“信噪比墙”.本文通过信噪比墙这一现象进行分析,同时由于协作感知算法在确定噪声下在提高检测性能方便表现出的优势,提出一种基于信噪比墙的协作能量检测算法,通过仿真结果分析,表明本文算法在检测性能和节能上较已有的协作算法具有优势.  相似文献   

13.

Link adaptation technique, in which the modulation and coding used in a communication system is changed as per the channel conditions is a very well investigated topic for link throughput maximization with widespread application in wireless access networks. Most of the known algorithms dynamically adjust transmitter data rate by comparing instantaneous SNR with pre-defined SNR switching thresholds, in order to maximize throughput while maintaining the desired quality of service. However, the use of incorrect or stale values of these pre-defined switching thresholds often leads to selection of erroneous modulation and coding schemes resulting in unsatisfactory throughput or quality of service. This work introduces a novel scheme which achieves the maximum possible throughput while maintaining the target quality of service by dynamically acquiring the threshold values of different modulation and coding schemes used in the system for a given value of block error rate based on measurement at the receiver. This helps in keeping the threshold look up table up to date, so that proper threshold values for mode switching is present for all channel conditions. Also, a relationship between the throughput and the accuracy of the threshold value calculation is provided so that these can be optimized depending on the user requirements. The performance evaluation shows that the proposed system outperforms the conventional link adaptation in various operating scenarios where pre-determined look up tables are not available.

  相似文献   

14.
无线网络中存在信噪比较高的恶意认知用户的情况,为了有效利用可靠的认知无线电(CR)技术用户的本地感知结果,提出了一种基于信任度的信噪比比较协同频谱感知算法,可有效剔除认知网络中存在的信噪比较高的恶意认知用户。仿真实验表明,在存在恶意认知用户的认知无线电网络中,该算法检测性能优于传统的或准则(OR)数据融合的协同频谱感知算法以及基于信噪比比较协同频谱感知算法。  相似文献   

15.

Cognitive radio (CR) is a promising technology for the upcoming 5G communication which addresses opportunistic channel usage for enhanced spectrum utilization. However, Quality of Service (QoS) provisioning is a major challenge for CR Network due to the service interruption and packet error caused by random primary activities. In addition to this, periodic spectrum sensing for primary user protection reduces the effective throughput of the secondary users (SUs). However, to ensure QoS of SUs especially for video application, throughput enhancement is necessary which can be achieved by efficient spectrum sensing and channel allocation policy. As the QoS requirements are different for different secondary applications, we propose a novel content aware channel allocation scheme that enhances the Quality of Experience (QoE) of SUs. At first, the proposed scheme analyzes the QoS requirements of different SUs and prioritizes them. Consequently, the optimum sensing duration is determined to maximize the transmission efficiency and throughput of SUs. Finally, a novel content aware transmission efficiency-based channel assignment scheme (CATECAS) is proposed for SUs, considering the estimated channel quality and QoS requirements concurrently. Extensive performance analysis of CATESCAS on real-time video and file download applications confirms significant QoE improvement for SUs especially for rapid movement type of video application, which is considered as the most critical among different secondary applications.

  相似文献   

16.
Joint impact of sensing time and improved energy detector (IED) parameter is evaluated for an energy efficient cooperative cognitive radio (CR) system where the CR users use IED. The aim of this work is to design the CR system in such a way that it can achieve two objectives for a given level of protection on primary user: (i) optimization of sensing time to make balance between detection performance and throughput and (ii) appropriate allocation of energy between sensing time and transmission time so as to enhance the energy efficiency of the CR system. The key parameters such as sensing time and IED parameter are set appropriately to meet the objectives. The performance is assessed in terms of throughput and energy efficiency of the system. The effect of the sensing time and the IED parameter on the performance is evaluated under a collision constraint. Furthermore, the optimal sensing time and IED parameter are investigated jointly for which the higher throughput as well as maximum energy efficiency can be obtained, and at the same time, a desired detection probability can also be maintained by the CR system. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
姚刚  郑宝玉  池新生 《信号处理》2012,28(6):873-878
在认知无线电(CR)网络中进行频谱共享接入,首要的任务是进行频谱感知,并发现频谱空洞。基于认知无线网络中信号频域的固有稀疏性,本文结合了压缩感知(CS)技术与加权平均一致(weighted average consensus)算法,建立了分布式宽带压缩频谱感知模型。频谱感知分为两个阶段,在感知阶段,各个CR节点对接收到的主用户信号进行压缩采样以减少对宽带信号采样的开销和复杂度,并做出本地频谱估计;在信息融合阶段,各CR节点的本地频谱估计结果以分布式的方式进行信息融合,并得到最终的频谱估计结果,获得分集增益。仿真结果表明,结合压缩感知与加权平均一致算法增强了频谱感知的性能,比在相同的CR网络中使用平均一致算法时有了性能上的提升。   相似文献   

18.
In cognitive radio (CR) networks, secondary users should effectively use unused licensed spectrums, unless they cause any harmful interference to the primary users. Therefore, spectrum sensing and channel resource allocation are the 2 main functionalities of CR networks, which play important roles in the performance of a CR system. To maximize the CR system utility, we propose a joint out‐of‐band spectrum sensing and operating channel allocation scheme based on genetic algorithm for frequency hopping–based CR networks. In this paper, to effectively sense the primary signal on hopping channels at each hopping slot time, a set of member nodes sense the next hopping channel, which is called out‐of‐band sensing. To achieve collision‐free cooperative sensing reporting, the next channel detection notification mechanism is presented. Using genetic algorithm, the optimum sensing and data transmission schedules are derived. It selects a sensing node set that participate the spectrum sensing for the next expected hopping channel during the current channel hopping time and another set of nodes that take opportunity for transmitting data on the current hopping channel. The optimum channel allocation is performed in accordance with each node's individual traffic demand. Simulation results show that the proposed scheme can achieve reliable spectrum sensing and efficient channel allocation.  相似文献   

19.
In this paper, we propose a novel transmission probability scheduling (TPS) scheme for the opportunistic spectrum access based cognitive radio system (OSA-based CRS), in which the secondary user (SU) optimally schedules its transmission probabilities in the idle period of the primary user (PU), to maximize the throughput of the SU over a single channel when the collision probability perceived by the PU is constrained under a required threshold. Particularly, we first study the maximum achievable throughput of the SU when the proposed TPS scheme is employed under the assumption that the distribution of the PU idle period is known and the spectrum sensing is perfect. When the spectrum sensing at the SU is imperfect, we thoroughly quantify the impact of sensing errors on the SU performance with the proposed TPS scheme. Furthermore, in the situation that the traffic pattern of the PU and its parameters are unknown and the spectrum sensing is imperfect, we propose a predictor based on hidden Markov model (HMM) for the proposed TPS scheme to predict the future PU state. Extensive simulations are conducted and show that the proposed TPS scheme with the HMM-based predictor can achieve a reasonably high SU throughput under the PU collision probability constraint even when the sensing errors are severe.  相似文献   

20.
In cognitive vehicular networks (CVNs), spectrum sensing and access are introduced as the promising technologies to fully exploit the underutilized licensed spectrum. Because the sensing ability of a single secondary vehicular user (SVU) is affected by high mobility, dynamic topology, and unreliable wireless environment, collaborative sensing is developed to increase the sensing accuracy and efficiency. Generally, the synchronization is required in the collaborative sensing in CVN. However, it is difficult to keep all SVUs synchronized with others for sensing under the high dynamic network topology, and the sensing overhead of the synchronous cooperative action may be significant. In this paper, we first propose an asynchronous cooperative sensing scheme in which each SVU provides an energy information (EI) that is tagged with location and time information. The sensing decision will be made on account of the EI. Considering the temporal and spatial diversities of each SVU, we assign different weights to each EI and formulate the probabilities of detection and false alarm as the optimization problems to find the optimal weight of each EI. Then, based on the asynchronous sensing, the specifications of the opportunistic spectrum access mechanism are elaborated in both centralized and decentralized CVNs for the sake of practical implementation. We analyze the system performance in terms of achievable throughput and transmission delay. Numerical results show that the proposed scheme is able to achieve substantially higher throughput and lower delay, as compared with existing schemes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号