首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experiment is carried out here to investigate the evaporation heat transfer and associated evaporating flow pattern for refrigerant R-134a flowing in a horizontal narrow annular duct. The gap of the duct is fixed at 1.0 and 2.0 mm. In the experiment, the effects of the duct gap, refrigerant vapor quality, mass flux and saturation temperature and imposed heat flux on the measured evaporation heat transfer coefficient hr are examined in detail. For the duct gap of 2.0 mm, the refrigerant mass flux G is varied from 300 to 500 kg/m2 s, imposed heat flux q from 5 to 15 kW/m2, vapor quality xm from 0.05 to 0.95, and refrigerant saturation temperature Tsat from 5 to 15 °C. While for the gap of 1.0 mm, G is varied from 500 to 700 kg/m2 s with the other parameters varied in the same ranges as that for δ = 2.0 mm. The experimental data clearly show that the evaporation heat transfer coefficient increases almost linearly with the vapor quality of the refrigerant and the increase is more significant at a higher G. Besides, the evaporation heat transfer coefficient also rises substantially at increasing q. Moreover, a significant increase in the evaporation heat transfer coefficient results for a rise in Tsat, but the effects are less pronounced in the narrower duct at a low imposed heat flux and a high refrigerant mass flux. Furthermore, the evaporation heat transfer coefficient increases substantially with the refrigerant mass flux except at low vapor quality. We also note that reducing the duct gap causes a significant increase in hr. In addition to the heat transfer data, photos of R-134a evaporating flow taken from the duct side show the change of the dominant two-phase flow pattern in the duct with the experimental parameters. Finally, an empirical correlation for the present measured heat transfer coefficient for the R-134a evaporation in the narrow annular ducts is proposed.  相似文献   

2.
Flow boiling of refrigerant HFC-134a in a multi-microchannel copper cold plate evaporator is investigated. The heat transfer coefficient is measured locally for the entire range of vapor qualities starting from subcooled liquid to superheated vapor. The test piece contains 17 parallel, rectangular microchannels (0.762 mm wide) of hydraulic diameter 1.09 mm and aspect ratio 2.5. The design of the test facility is validated by a robust energy balance as well as a comparison of single-phase heat transfer coefficients with results from the literature. Results are presented for four different mass fluxes of 20.3, 40.5, 60.8, and 81.0 kg m?2 s?1, which correspond to refrigerant mass flow rates of 0.5–2.0 g s?1, and at three different pressures 400, 550 and 750 kPa corresponding to saturation temperatures of 8.9, 18.7, and 29 °C. The wall heat flux varies from 0 to 20 W/cm2 in the experiments. The heat transfer coefficient is found to vary significantly with refrigerant inlet quality and mass flow rate, but only slightly with saturation pressure for the range of values investigated. The peak heat transfer coefficient is observed for a vapor quality of approximately 20%.  相似文献   

3.
A complete solution for boiling phenomena in smooth tubes has been giving as a procedure regarding with the calculation of convective heat transfer coefficient and pressure drop using accurate experimental data validated by flow regime maps and sight glasses on the experimental facility. The experimental study is conducted in order to investigate the effect of operating parameters on flow boiling convective heat transfer coefficient and pressure drop of R134a. The smooth tube having 8.62 mm inner diameter and 1100 mm length is used in the experiments. The effect of mass flux, saturation temperature and heat flux is researched in the range of 290–381 kg/m2 s, 15–22 °C and 10–15 kW/m2, respectively. The experiments revealed that the heat transfer coefficient and pressure drop are significantly affected by mass flux for all tested conditions. Moreover, the experimental results are compared with well-known heat transfer coefficient and frictional pressure drop correlations given in the literature. In addition, 122 number of heat transfer and pressure drop raw experimental data is given for researchers to validate their theoretical models.  相似文献   

4.
An experimental investigation on two-phase flow boiling heat transfer with refrigerants of R-22, R-134a, R-410A, C3H8 and CO2 in horizontal circular small tubes is presented. The experimental data were obtained over a heat flux range of 5–40 kW m?2, mass flux range of 50–600 kg m?2 s?1, saturation temperature range of 0–15 °C, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5, 1.5 and 3.0 mm, and lengths of 330, 1000, 1500, 2000 and 3000 mm. The experimental data were mapped on Wang et al. (1997) [5] and Wojtan et al. (2005) [6] flow pattern maps. The effects of mass flux, heat flux, saturation temperature and inner tube diameter on the heat transfer coefficient are reported. The experimental heat transfer coefficients were compared with some existing correlations. A new boiling heat transfer coefficient correlation that is based on a superposition model for refrigerants in small tubes is presented with 15.28% mean deviation and ?0.48% average deviation.  相似文献   

5.
The boiling heat transfer of refrigerant R-134a flow in horizontal small-diameter tubes with inner diameter of 0.51, 1.12, and 3.1 mm was experimentally investigated. Local heat transfer coefficient and pressure drop were measured for a heat flux ranging from 5 to 39 kW/m2, mass flux from 150 to 450 kg/m2 s, evaporating temperature from 278.15 to 288.15 K, and inlet vapor quality from 0 to 0.2. Flow patterns were observed by using a high-speed video camera through a sight glass at the entrance of an evaporator. Results showed that with decreasing tube diameter, the local heat transfer coefficient starts decreasing at lower vapor quality. Although the effect of mass flux on the local heat transfer coefficient decreased with decreasing tube diameter, the effect of heat flux was strong in all three tubes. The measured pressure drop for the 3.1-mm-ID tube agreed well with that predicted by the Lockhart–Martinelli correlation, but when the inner tube diameter was 0.51 mm, the measured pressure drop agreed well with that predicted by the homogenous pressure drop model. With decreasing tube diameter, the flow inside a tube approached homogeneous flow. The contribution of forced convective evaporation to the boiling heat transfer decreases with decreasing the inner tube diameter.  相似文献   

6.
An experiment is carried out here to investigate the characteristics of the evaporation heat transfer for refrigerants R-134a and R-407C flowing in horizontal small tubes having the same inside diameter of 0.83 or 2.0 mm. In the experiment for the 2.0-mm tubes, the refrigerant mass flux G is varied from 200 to 400 kg/m2 s, imposed heat flux q from 5 to 15 kW/m2, inlet vapor quality xin from 0.2 to 0.8 and refrigerant saturation temperature Tsat from 5 to 15 °C. While for the 0.83-mm tubes, G is varied from 800 to 1500 kg/m2 s with the other parameters varied in the same ranges as those for Di = 2.0 mm. In the study the effects of the refrigerant vapor quality, mass flux, saturation temperature and imposed heat flux on the measured evaporation heat transfer coefficient hr are examined in detail. The experimental data clearly show that both the R-134a and R-407C evaporation heat transfer coefficients increase almost linearly and significantly with the vapor quality of the refrigerant, except at low mass flux and high heat flux. Besides, the evaporation heat transfer coefficients also increase substantially with the rises in the imposed heat flux, refrigerant mass flux and saturation temperature. At low R-134a mass flux and high imposed heat flux the evaporation heat transfer coefficient in the smaller tubes (Di = 0.83 mm) may decline at increasing vapor quality when the quality is high, due to the partial dryout of the refrigerant flow in the smaller tubes at these conditions. We also note that under the same xin, Tsat, G, q and Di, refrigerant R-407C has a higher hr when compared with that for R-134a. Finally, an empirical correlation for the R-134a and R-407C evaporation heat transfer coefficients in the small tubes is proposed.  相似文献   

7.
An experimental study on in-tube flow boiling heat transfer of R-134a/R-290/R-600a refrigerant mixture has been carried out under varied heat flux test conditions. The heat transfer coefficients are experimentally measured at temperatures between ?8 and 5 °C for mass flow rates of 3–5 g s?1. Acetone is used as a hot fluid which flows in the outer tube of diameter 28.57 mm while the refrigerant mixture flows in the inner tube of diameters 9.52 and 12.7 mm. By regulating the acetone flow conditions, the heat flux is maintained between 2 and 8 kW/m2 and the pressure of the refrigerant is maintained between 3.2 and 5 bar. The comparison of experimental results with the familiar correlations shows that the correlations over predict the heat transfer coefficients for this mixture when stratified and stratified-wavy flow prevail. Multiple regression technique is used to evolve and modify existing correlations to predict the heat transfer coefficient of the refrigerant mixture. It is found that the modified version of Lavin–Young correlation (1965) predicts the heat transfer coefficient of the considered mixture within an average deviation of ±20.5 %.  相似文献   

8.
The two-phase heat transfer coefficient and pressure drop of pure HFC-134a condensing inside a smooth helically coiled concentric tube-in-tube heat exchanger are experimentally investigated. The test section is a 5.786 m long helically coiled double tube with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from smooth copper tubing of 9.52 mm outer diameter and 8.3 mm inner diameter. The outer tube is made from smooth copper tubing of 23.2 mm outer diameter and 21.2 mm inner diameter. The heat exchanger is fabricated by bending a straight copper double-concentric tube into a helical coil of six turns. The diameter of coil is 305 mm. The pitch of coil is 35 mm. The test runs are done at average saturation condensing temperatures ranging between 40 and 50 °C. The mass fluxes are between 400 and 800 kg m−2 s−1 and the heat fluxes are between 5 and 10 kW m−2. The pressure drop across the test section is directly measured by a differential pressure transducer. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The average heat transfer coefficient of the refrigerant is determined by applying an energy balance based on the energy rejected from the test section. The effects of heat flux, mass flux and, condensation temperature on the heat transfer coefficients and pressure drop are also discussed. It is found that the percentage increase of the average heat transfer coefficient and the pressure drop of the helically coiled concentric tube-in-tube heat exchanger, compared with that of the straight tube-in-tube heat exchanger, are in the range of 33–53% and 29–46%, respectively. New correlations for the condensation heat transfer coefficient and pressure drop are proposed for practical applications.  相似文献   

9.
Flow boiling heat transfer experiments using R134a were carried out for jet impingement on smooth and enhanced surfaces. The enhanced surfaces were circular micro pin fins, hydrofoil micro pin fins, and square micro pin fins. The effects of saturation pressure, heat flux, Reynolds number, pin fin geometry, pin fin array configuration, and surface aging on flow boiling heat transfer characteristics were investigated. Flow boiling experiments were carried out for two different saturation pressures, 820 kPa and 1090 kPa. Four jet exit velocities ranging from 1.1–4.05 m/s were investigated. Flow boiling jet impingement on smooth surfaces was characterized by large temperature overshoots, exhibiting boiling hysteresis. Flow boiling jet impingement on micro pin fins displayed large heat transfer coefficients. Heat transfer coefficients as high as 150,000 W/m2 K were observed at a relatively low velocity of 2.2 m/s with the large (D = 125 μm) circular micro pin fins. Jet velocity, surface aging, and saturation pressure were found to have significant effects on the two-phase heat transfer characteristics. Subcooled nucleate boiling was found to be the dominant heat transfer mechanism.  相似文献   

10.
This article is the first in a three part study on flow boiling of refrigerants R236fa and R245fa in a silicon multi-microchannel heat sink. The heat sink was composed of 67 parallel channels, which are 223 μm wide, 680 μm high and 20 mm long with 80 μm thick fins separating the channels. The base heat flux was varied from 3.6 to 221 W/cm2, the mass velocity from 281 to 1501 kg/m2 s and the exit vapour quality from 2% to 75%. The working pressure and saturation temperature were set nominally at 273 kPa and 25 °C, respectively. The present database includes 1217 local heat transfer coefficient measurements, for which three different heat transfer trends were identified, but in most cases the heat transfer coefficient increased with heat flux and was almost independent of vapour quality and mass velocity. Importantly, it was found for apparently the first time that the heat transfer coefficient as a function of vapour quality reaches a maximum at very high heat fluxes and then decreases with further increase of heat flux.  相似文献   

11.
This paper reports a study of heat transfer in the post-critical heat flux (post-CHF) regime under forced convective upflow conditions in a uniformly heated vertical tube of 12.7 mm internal diameter and 3 m length. Experiments were conducted with non-azeotropic ternary refrigerant mixture R-407C for reduced pressures ranging from 0.37 to 0.75, mass flux values from 1200 to 2000 kg/m2 s and heat flux from 50 to 80 kW/m2. Data shows a considerable effect of system pressure on the post-CHF heat transfer coefficient for specified mass and heat fluxes. The post-CHF heat transfer coefficients for R-407C are compared with three existing correlations which are found to over predict the current data. A modified correlation to represent the experimental data for R-407C is presented.  相似文献   

12.
Three-dimensional simulations of condensation of refrigerant R134a in a horizontal minichannel are presented. Mass fluxes ranging from 50 kg m?2 s?1 up to 1000 kg m?2 s?1 are considered in a circular minichannel of 1 mm diameter, and uniform wall and vapour–liquid interface temperatures are imposed as boundary conditions. The Volume of Fluid (VOF) method is used to track the vapour–liquid interface; the effects of interfacial shear stress, gravity and surface tension are taken into account. The influence of turbulence in the condensate film is analysed and compared against the assumption of laminar condensate flow by employing different computational approaches and validating the results against experimental data. Under the assumption of laminar condensate flow, experimental heat transfer coefficient values at low mass fluxes can be predicted, but the computed heat transfer coefficient is found to be almost independent of mass flux and vapour quality. Only when turbulence in the condensate film is taken into account does the numerical model capture the influence of mass flux that is observed in the experimental measurements.  相似文献   

13.
An innovative cooling system based on evaporative CO2 two-phase flow is under investigation for the tracker detectors upgrade at CERN (European Organization for Nuclear Research). The radiation hardness and the excellent thermodynamic properties emphasize carbon dioxide as a cooling agent in the foreseen minichannels. A circular stainless steel tube in horizontal orientation with an inner diameter of 1.42 mm and a length of 0.3 m has been used as a test section to perform the step-wise scanning of the vapor quality in the entire two-phase region. To characterize the heat transfer and the pressure drop depending on the vapor quality in the tube, measurements have been performed by varying the mass flux from 300 to 600 kg/m2 s, the heat flux from 7.5 to 29.8 kW/m2 and the saturation temperature from ?40 to 0 °C (reduced pressures from 0.136 to 0.472). Heat transfer coefficients between 4 kW/m2 K and 28 kW/m2 K and pressure gradients up to 75 kPa/m were registered. The measured data was analyzed corresponding to the dependencies on heat flux, mass flux and saturation temperature. A database has been established containing about 2000 measurement points. The experimental data was compared with common models recently developed by Cheng et al. [1], [2] to cross check their applicability. The overall trends and experimental data were reproduced as predicted by the models before the dryout onset, and deviations have been analyzed. A modified friction factor for the pressure drop model [1] in mist flow has been proposed based on the experimental data.  相似文献   

14.
An experimental study is carried out to investigate the characteristics of the evaporation heat transfer for different fluids. Namely, pure refrigerants fluids (R22 and R134a), azeotropic and quasi-azeotropic mixtures (R404A, R410A, R507) and zeotropic mixtures (R407C and R417A).The test section is a smooth, horizontal, stainless steel tube (6 mm ID, 6 m length) uniformly heated by the Joule effect. The flow boiling characteristics of the refrigerant fluids are evaluated in 250 different operating conditions. Thus, a data-base of more than 2000 data points is produced.The experimental tests are carried out varying: (i) the refrigerant mass fluxes within the range 200–1100 kg/m2 s; (ii) the heat fluxes within the range 3.50–47.0 kW/m2; (iii) the evaporating pressures within the range 3.00–12.0 bar.In this study, the effect on measured heat transfer coefficient of vapour quality, mass flux, saturation temperature, imposed heat flux, thermo-physical properties are examined in detail.  相似文献   

15.
The current paper presents experimental investigation of nucleate pool boiling of R-134a and R-123 on enhanced and smooth tubes. The enhanced tubes used were TBIIHP and TBIILP for R-134a and R-123, respectively. Pool boiling data were taken for smooth and enhanced tubes in a single tube test section. Data were taken at a saturation temperature of 4.44 °C. Each test tube had an outside diameter of 19.05 mm and a length of 1 m. The test section was water heated with an insert in the water passage. The insert allowed measurement of local water temperatures down the length of the test tube. Utilizing this instrumentation, local heat transfer coefficients were determined at five locations along the test tube. The heat flux range was 2.5–157.5 kW/m2 for the TBIIHP tube and 3.1–73.2 kW/m2 for the TBIILP tube. The resulting heat transfer coefficient range was 4146–23255 W/m2. °C and 5331–25950 W/m2. °C for both tubes, respectively. For smooth tube testing, the heat flux ranges were 7.3–130.7 kW/m2 and 7.5–60.7 kW/m2 for R-134a and R-123, respectively; with resulting heat transfer coefficient ranges of 1798.9–11,379 W/m2. °C and 535.4–3181.8 W/m2. °C. The study provided one of the widest heat flux ranges ever examined for these types of tubes and showed significant structure to the pool boiling curve that had not been traditionally observed. Additionally, this paper presented an investigation of enhanced tubes pool boiling models.  相似文献   

16.
An empirical setup has been established to study heat transfer and pressure drop characteristics during condensation of R600a, a hydrocarbon refrigerant, in a horizontal plain tube and different flattened channels. Round copper tubes of 8.7 mm I.D. were deformed into flattened channels with different interior heights of 6.7 mm, 5.2 mm and 3.1 mm as test sections. The test conditions include heat flux of 17 kw/m2, mass velocity in the range of 154.8–265.4 kg/m2s and vapor quality variation from approximately 10% to 80%. Results indicate that flattening the tubes causes significant enhancement of heat transfer coefficient which is also accompanied by simultaneous augmentation in flow pressure drop. Therefore, the overall performance of the flattened tubes with respect to heat transfer enhancement considering the pressure drop penalty is analyzed. It is concluded that the flattened tube with 5.2 mm inner height tube has the best overall performance. Due to the failure of pre-existing correlations for round tube condensation heat transfer, a new correlation is proposed which predicts 90% of the entire data within ± 17% error.  相似文献   

17.
The subcooled flow boiling heat transfer characteristics of a kerosene kind hydrocarbon fuel were investigated in an electrically heated horizontal tube with an inner diameter of 1.0 mm, in the range of heat flux: 20–1500 kW/m2, fluid temperature: 25–400 °C, mass flux: 1260–2160 kg/m2 s, and pressure: 0.25–2.5 MPa. It was proposed that nucleate boiling heat transfer mechanism is dominant, as the heat transfer performance is dependent on heat flux imposed on the channel, rather than the fuel flow rate. It was found that the wall temperatures along the test section kept constant during the fully developed subcooled boiling (FDSB) of the non-azeotropic hydrocarbon fuel. After the onset of nucleate boiling, the temperature differences between inner wall and bulk fluid begin to decrease with the increase of heat flux. Experimental results show that the complicated boiling heat transfer behavior of hydrocarbon fuel is profoundly affected by the pressure and heat flux, especially by fuel subcooling. A correlation of heat transfer coefficients varying with heat fluxes and fuel subcooling was curve fitted. Excellent agreement is obtained between the predicted values and the experimental data.  相似文献   

18.
Flow boiling of R-123 in a hydrofoil-based micro pin fin heat sink was investigated. Average two-phase heat transfer coefficients were obtained over effective heat fluxes ranging from 19 to 312 W/cm2 and mass fluxes from 976 to 2349 kg/m2 s. The paper presents a flow map, which divides the data into three flow pattern regions: bubbly, wavy intermittent and spray-annular flows. Heat transfer coefficient trends and flow morphologies were used to infer boiling heat transfer mechanisms. Existing conventional scale correlations for circular tubes resulted in large scatter and were not able to predict the heat transfer coefficients accurately.  相似文献   

19.
Experiments on flow boiling heat transfer in high aspect ratio micro-channels with FC-72 were carried out. Three channels with different hydraulic diameters (571, 762 and 1454 μm) and aspect ratios (20, 20 and 10) were selected. The tested mass fluxes were 11.2, 22.4 and 44.8 kg m?2 s?1 and heat fluxes ranging from 0–18.6 kW m?2. In the present study, boiling curves with obvious temperature overshoots are presented. Average heat transfer coefficient and local heat transfer coefficient along stream-wise direction are measured as a function of heat flux and vapour quality respectively. Slug-annular flow and annular flow are the main flow regimes. Convective boiling is found to be the dominant heat transfer mechanism. Local heat transfer coefficient increases with decreasing hydraulic diameter. Moreover, the effect of hydraulic diameter is more significant when mass flux is higher. The unique channel geometry is considered as the decisive reason of the flow regimes as well as heat transfer mechanisms.  相似文献   

20.
This paper presents experimental results for flow boiling heat transfer coefficient and critical heat flux (CHF) in small flattened tubes. The tested flattened tubes have the same equivalent internal diameter of 2.2 mm, but different aspect height/width ratios (H/W) of ¼, ½, 2 and 4. The experimental data were compared against results for circular tubes using R134a and R245fa as working fluids at a nominal saturation temperature of 31 °C. For mass velocities higher than 200 kg/m2s, the flattened and circular tubes presented similar heat transfer coefficients. Such a behavior is related to the fact that stratification effects are negligible under conditions of higher mass velocities. Heat transfer correlations from the literature, usually developed using only circular-channel experimental data, predicted the flattened tube results for mass velocities higher than 200 kg/m2s with mean absolute error lower than 20% using the equivalent diameter to account for the geometry effect. Similarly, the critical heat flux results were found to be independent of the tube aspect ratio when the same equivalent length was kept. Equivalent length is a new parameter which takes into account the channel heat transfer area. The CHF correlations for round tubes predicted the flattened tube data relatively well when using the equivalent diameter and length. Furthermore, a new proposed CHF correlation predicted the present flattened tube data with a mean absolute error of 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号