首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The flow boiling heat transfer in a single microchannel was investigated with pure water and nanofluid as the working fluids. The microchannel had a size of 7500 × 100 × 250 μm, which was formed by two pyrex glasses and a silicon wafer. A platinum film with a length of 3500 μm and a width of 80 μm was deposited at the bottom channel surface, acting as the heater and temperature sensor. The nanofluid had a low weight concentration of 0.2%, consisting of de-ionized water and 40 nm Al2O3 nanoparticles. The nanoparticle deposition phenomenon was not observed. The boiling flow displays chaotic behavior due to the random bubble coalescence and breakup in the milliseconds timescale at moderate heat fluxes for pure water. The flow instability with large oscillation amplitudes and long cycle periods was observed with further increases in heat fluxes. The flow patterns are switched between the elongated bubbles and isolated miniature bubbles in the timescale of 100 s. It is found that nanofluid significantly mitigate the flow instability without nanoparticle deposition effect. The boiling flow is always stable or quasi-stable with significantly reduced pressure drop and enhanced heat transfer. Miniature bubbles are the major flow pattern in the microchannel. Elongated bubbles temporarily appear in the milliseconds timescale but isolated miniature bubbles will occupy the channel shortly. The decreased surface tension force acting on the bubble accounts for the smaller bubble size before the bubble departure. The inhibition of the dry patch development by the structural disjoining pressure, and the enlarged percentage of liquid film evaporation heat transfer region with nanoparticles, may account for the heat transfer enhancement compared to pure water.  相似文献   

2.
A series of experimental investigations of boiling incipience and bubble dynamics of water under pulsed heating conditions for various pulse durations ranging from 1 ms to 100 ms were conducted. Using a very smooth square platinum microheater, 100 μm on a side, and a high-speed digital camera, the boiling incipience was observed and investigated as a function of the bulk temperature of the microheater, pulse power level, and pulse duration. Given a specific pulse duration, for low pulse power levels, there would be no bubble nucleation or bubble mergence, for moderate pulse power levels, individual bubbles generated on the heater merged to form a single large bubble, while for high pulse power levels, the rapid growth of the individual bubbles and subsequent bubble interaction, resulted in a reduction in bubble coalescence into a single larger bubble, referred to as bubble splash. The transient heat flux range at which bubble coalescence occurs was identified experimentally, along with the temporal variations of bubble size, bubble interface velocity and interface acceleration.  相似文献   

3.
A photographic study was carried out for the subcooled flow boiling of water to elucidate the rise characteristics of single vapor bubbles after the departure from nucleation sites. The test section was a transparent glass tube of 20 mm in inside diameter and the flow direction was vertical upward; liquid subcooling was parametrically changed within 0–16 K keeping system pressure and liquid velocity at 120 kPa and 1 m/s, respectively. The bubble rise paths were analyzed from the video images that were obtained at the heat flux slightly higher than the minimum heat flux for the onset of nucleate boiling. In the present experiments, all the bubbles departed from their nucleation sites immediately after the inception. In low subcooling experiments, bubbles slid upward and consequently were not detached from the vertical heated wall; the bubble size was increased monotonously with time in this case. In moderate and high subcooling experiments, bubbles were detached from the wall after sliding for several millimeters and migrated towards the subcooled bulk liquid. The bubbles then reversed the direction of lateral migration and were reattached to the wall at moderate subcooling while they collapsed due to the condensation at high subcooling. It was hence considered that the mechanisms of the heat transfer from heated wall and the axial growth of vapor volume were influenced by the difference in bubble rise path. It was observed after the inception that bubbles were varied from flattened to more rounded shape. This observation suggested that the bubble detachment is mainly caused by the change in bubble shape due to the surface tension force.  相似文献   

4.
Heat transfer associated with a vapor bubble sliding along a downward-facing inclined heater surface was studied experimentally using holographic interferometry. Volume growth rate of the bubbles as well as the rate of heat transfer along the bubble interface were measured to understand the mechanisms contributing to the enhancement of heat transfer during sliding motion. The heater surface was made of polished silicon wafer (length 185 mm and width 49.5 mm). Experiments were conducted with PF-5060 as test liquid, for liquid subcoolings ranging from 0.2 to 1.2 °C and wall superheats from 0.2 to 0.8 °C. The heater surface had an inclination of 75° to the vertical. Individual vapor bubbles were generated in an artificial cavity at the lower end of the heater surface. High-speed digital photography was used to measure the bubble growth rate. The temperature field around the sliding bubble was measured using holographic interferometry. Heat transfer at the bubble interface was calculated from the measured temperature field. Results show that for the range of parameters considered the bubbles continued to grow, with bubble growth rates decreasing with increasing liquid subcooling. Heat transfer measurements show that condensation occurs on most of the bubble interface away from the wall. For the parameters considered condensation accounted for less than 12% of the rate heat transfer from the bubble base. In this study the heater surface showed no drop in temperature as a result of heat transfer enhancement during bubbles sliding.  相似文献   

5.
Homogeneous vapor nucleation of water in the electrolyte solution within a nanopore at its superheat limit was studied using the bubble nucleation model based on molecular interaction. The wall motion of the bubble that evolved from the evaporated water was obtained using the Keller–Miksis equation and the distribution of temperature inside the bubble was obtained by solving the continuity, momentum and energy equations for the vapor inside the bubble. Heat transfer at the interface was also considered in this study. The nucleation rate of the 3 M NaCl solution at 571 K is estimated to be approximately 0.15 × 1028 clusters/(m3 s). With this value of the nucleation rate, the complete evaporation time of the 50 nm radius of the electrolyte solution is approximately 0.60 ns. The calculated life time of the bubble that evolved from the evaporated solution, or the time duration for the growth and subsequent collapse of the bubble, is approximately 32 ns, which is close agreement with the observed result of 28 ns. The bubble reaches its maximum radius of 301 nm at 13.2 ns after the bubble evolution.  相似文献   

6.
In the experiment, bubbles were generated from the brass nozzle with the inner diameter of 1.1 mm submerged in the glass tank (400 × 400 × 700 mm) filled with distillated water. Pressure fluctuations and signal from the laser-phototransistor sensor were recorded simultaneously. The movement of bubble wall was measured using a high speed camera and image processing technique. Results of analysis of images have been correlated with pressure and laser-phototransistor signals. In the analysis the Fourier spectrum, wavelet spectrum and non-linear methods (mutual information, attractor reconstruction, largest Lyapunov exponent and correlation dimension) have been used.The three applied in the paper techniques of measurement of dynamical properties of bubbling allow us to discuss in detail the mechanisms of different chaotic behaviors of bubbling. Two ranges of the air volume flow rate with different kinds of bubble chaotic behaviors have been identified. For the air volume flow rate less than 0.2 l/min the air pressure chaotic fluctuations do not cause the significant chaotic changes of bubble departure frequencies. When the air volume flow rate increases above the 0.2 l/min, the interaction between departing bubbles causes nonperiodic bubble wall movement, and then the appearance of chaotic changes of bubble departure frequency.  相似文献   

7.
Visualization experiments were carried out in the present study to investigate formation and detachment of the bubbles developing from an immersed micro-orifice on a plate in a stagnant and isothermal liquid. A sub-fitting method was proposed to describe the bubble edges and to extrude the bubble characteristics. Taking the microscale effect into consideration, the dynamic behavior of bubbles emerging from various orifices with 0.5, 0.12 and 0.054 mm in diameter was analyzed and compared. The experimental results showed that the bubble waiting time, departure time and departure volume decreased with decreasing orifice diameter. Based on the analysis on actual gas flow rate at the orifice, the evolution of bubble formation process was described by three or four stages for different orifices. The bubble formation under the condition of 0.5 mm orifice mainly experienced the nucleation stage, while the steady growth stage was the dominator for the micro-orifices with 0.12 and 0.054 mm in diameter. The rupture scene and evolution of bubble contact ring at the detachment moment were found to significantly vary with the orifice diameter. The inrush of several trailing bubbles into the detached leading bubble was observed for the orifices with 0.12 and 0.054 mm in diameter, resulting in a significant fluctuation in the interface.  相似文献   

8.
Growth of an isolated bubble and horizontal coalescence events between bubbles of dissimilar size were examined during pool nucleate boiling of water on a horizontal, electrically-heated titanium foil 25 μm thick. Wall temperature measurements on the back of the foil by high-speed IR camera, synchronized with high-speed video camera recordings of the bubble motion, improved the temporal and spatial resolution of previous observations by high-speed liquid crystal thermography to 1 ms and 40 μm, respectively, leading to better detailed maps of the transient distributions of wall heat flux. The observations revealed complex behaviour that disagreed with some other observations and current modelling assumptions for the mechanisms of heat transfer over the wall contact areas of bubbles and interactions between bubbles. Heat transfer occurred from the entire contact area and was not confined to a narrow peripheral triple-contact zone. There was evidence of an asymmetrical interaction between bubbles before coalescence. It was hypothesised that a fast-growing bubble pushed superheated liquid under a slow-growing bubble. Contact of this liquid with regions of the wall that had been pre-cooled during bubble growth caused local reductions in the wall heat flux. During coalescence, movement of liquid under both bubbles caused further changes in the wall heat flux that also depended on pre-cooling. Contraction of the contact area caused a peripheral reduction in the heat flux and there was no evidence of a large increase in heat flux during detachment. Boiling on very thin foils imposes special conditions. Sensitivity to the thermal history of the wall must be taken into account when applying the observations and hypotheses to other conditions.  相似文献   

9.
Multi bubbles interaction and merger in a micro-channel flow boiling has been numerically studied. Effects of mass flux (56, 112, 200, and 335 kg/m2 1 s), wall heat flux (5, 10, and 15 kW/m2) and saturated temperature (300.15 and 303.15 K) are investigated. The coupled level set and volume of fluid (CLSVOF) method and non-equilibrium phase model are implemented to capture the two-phase interface, and the lateral merger process. It is found that the whole transition process can be divided to three sub-stages: sliding, merger, and post-merger. The evaporation rate is much higher in the first two stages due to the boundary layer effects in. Both the mass flux and heat flux affect bubble growth. Specifically, the bubble growth rate increase with the increase of heat flux, or the decrease of mass flux.  相似文献   

10.
The present study is an experimental investigation of nucleate boiling heat transfer mechanism in pool boiling from wire heaters immersed in saturated FC-72 coolant and water. The vapor volume flow rate departing from a wire during nucleate boiling was determined by measuring the volume of bubbles from the wire utilizing the consecutive-photo method. The effects of the wire size on heat transfer mechanism during a nucleate boiling were investigated, varying 25 μm, 75 μm, and 390 μm, by measuring vapor volume flow rate and the frequency of bubbles departing from a wire immersed in saturated FC-72. One wire diameter of 390 μm was selected and tested in saturated water to investigate the fluid effect on the nucleate boiling heat transfer mechanism. Results of the study showed that an increase in nucleate boiling heat transfer coefficients with reductions in wire diameter was related to the decreased latent heat contribution. The latent heat contribution of boiling heat transfer for the water test was found to be higher than that of FC-72. The frequency of departing bubbles was correlated as a function of bubble diameters.  相似文献   

11.
Condensation of steam in a single microchannel, silicon test section was investigated visually at low flow rates. The microchannel was rectangular in cross-section with a depth of 30 μm, a width of 800 μm and a length of 5.0 mm, covered with a Pyrex glass to allow for visualization of the bubble formation process. By varying the cooling rate during condensation of the saturated water vapor, it was possible to control the shape, size and frequency of the bubbles formed. At low cooling rates using only natural air convection from the ambient environment, the flow pattern in the microchannel consisted of a nearly stable elongated bubble attached upstream (near the inlet) that pinched off into a train of elliptical bubbles downstream of the elongated bubble. It was observed that these elliptical bubbles were emitted periodically from the tip of the elongated bubble at a high frequency, with smaller size than the channel width. The shape of the emitted bubbles underwent modifications shortly after their generation until finally becoming a stable vertical ellipse, maintaining its shape and size as it flowed downstream at a constant speed. These periodically emitted elliptical bubbles thus formed an ordered bubble sequence (train). At higher cooling rates using chilled water in a copper heat sink attached to the test section, the bubble formation frequency increased significantly while the bubble size decreased, all the while forming a perfect bubble train flowing downstream of the microchannel. The emitted bubbles in this case immediately formed into a circular shape without any further modification after their separation from the elongated bubble upstream. The present study suggests that a method for controlling the size and generation frequency of microbubbles could be so developed, which may be of interest for microfluidic applications. The breakup of the elongated bubble is caused by the large Weber number at the tip of the elongated bubble induced by the maximum vapor velocity at the centerline of the microchannel inside the elongated bubble and the smaller surface tension force of water at the tip of the elongated bubble.  相似文献   

12.
The dynamics and heat transfer characteristics of flow boiling bubble train moving in a micro channel is studied numerically. The coupled level set and volume of fluid (CLSVOF) is utilized to track interface and a non-equilibrium phase change model is applied to calculate the interface temperature as well as heat flux jump. The working fluid is R134a and the wall material is aluminum. The fluid enters the channel with a constant mass flux (335 kg/m2 1 s), and the boundary wall is heated with constant heat flux (14 kW/m2). The growth of bubbles and the transition of flow regime are compared to an experimental visualization. Moreover, the bubble evaporation rate and wall heat transfer coefficient have been examined, respectively. Local heat transfer is significantly enhanced by evaporation occurring vicinity of interface of the bubbles. The local wall temperature is found to be dependent on the thickness of the liquid film between the bubble train and the wall.  相似文献   

13.
A direct-contact compact heat exchanger to enhance cooling of hot water, has been manufactured and tested experimentally. Hereby hot water is dispersed into a cooler liquid gallium bath in the form of small water bubbles emanating from 48 holes with 3 mm diameter each, drilled on four horizontal bubbles distribution tubes. Heat transfer limitations posed by gallium's low specific heat have been circumvented by imbedding cooling water tubes within the gallium. Thereby it was possible to maintain gallium at almost 30 °C during water bubbling; slightly above gallium's freezing point. Temperature reduction by about 23 °C was possible for hot water flow with initial temperature of about 60 °C and flow rate of 11.3 g/s when bubbled through such gallium bath that has temperature of about 30 °C and thickness of about only 18 mm. To realize such temperature drop for water using equivalent shell-tube heat exchangers of conventional kinds with 3 mm diameter tubing, a tube length in the range of 70 to 80 cm would be required. Theoretical considerations and empirical correlations dedicated to solid sphere calculations have been used to predict motion and heat transfer events for water bubbles moving through isothermal gallium bath. The computations were extended to include the experimental temperature conditions tested. Computations agree very well with experimental results.  相似文献   

14.
Experiments were designed, and experimental equipment was built, to study the characteristics of micro-bubble emission boiling (MEB) in water contacting a copper heating surface 10 mm in diameter. The behavior of bubbles on the heating surface was captured by a high-speed video camera. The results of these experiments indicated that after subcooling exceeded 25 K, MEB occurred and was accompanied by the emission of numerous extremely small bubbles. During the initial stage of MEB, two different bubble behaviors were observed: a film of vapor on the heating surface expanded and shrank periodically, emitting micro-bubbles, and the film of vapor expanded unevenly before condensing or collapsing into many micro-bubbles. During fully developed MEB, the film of vapor exhibited irregular changes at its surface and partially collapsed in several milliseconds. Nearly simultaneously, a new vapor film layer formed on the heating surface. MEB never occurred during water subcooling when the heating surface was embedded 0.5 mm within a ceramic thimble.  相似文献   

15.
An experimental study of the heater size effect on micro boiling is reported in detail. Using a 1.66-ms-wide heating pulse, boiling in subcooled water was investigated on a series of micron/submicron thin film Pt heaters with various feature sizes ranging from 0.5 μm to 70 μm. It was found that there existed a critical heater size (10 μm): single spherical bubble generation with heater’s feature size less than 10 μm; oblate vapor blanket on the heater surface with the size larger than 10 μm. The bubble dynamics was studied by the visualization of the bubble nucleation process with a high-speed CCD. The onset bubble nucleation temperature was measured by using each Pt heater as a resistive temperature sensor. The formation of the oblate vapor blanket was attributed to the condensation effect of the vapor outside the superheated zone. The analysis was further validated by generating spherical bubble on heater with size larger than 10 μm with a longer heating pulse.  相似文献   

16.
In this work, the influence of electrohydrodynamic forces on lateral bubble coalescence during nucleate pool boiling is investigated. An experimental pool boiling test facility was used with n-pentane as the working fluid. Boiling took place atop a polished copper surface on which two artificial nucleation sites were fabricated. The nucleation sites were 180 μm in diameter and 500 μm deep with a centre-to-centre spacing of 660 μm. Two diametrically opposed windows allowed for illumination and high speed videography of the bubble growth process from the two nucleation sites. For the saturated boiling tests considered here, bubbles only formed at the two artificial nucleation sites allowing their coalescence behaviour to be scrutinized. A screen electrode above the boiling surface and a high voltage DC power supply facilitated the establishment of the electric field which was varied between 0 and 34.5 kVcm 1. Observation of the high speed videos has revealed that bubble coalescence is influenced in such a way that it is delayed in the presence of the electric field to such an extent that, at the highest electric field strength tested, it is avoided all together. To help explain the observed results, a simple numerical model is solved showing that bubbles in close proximity to one another create an electric field distribution with high intensity between them. The overall result is net polarization forces that push the bubbles apart, and the closer they are together the larger this repulsive force becomes.  相似文献   

17.
18.
An experimental investigation was conducted to explore the characteristics of subcooled boiling on microwires of 25 and 100 μm diameter. Microbubbles were observed to return to the wire surface after detachment, with two types of bubble return identified, i.e., isolated bubble return, and bubble return with liquid–vapor trailing jets. The former mode of bubble return occurred when isolated small bubbles (of less than 50 μm diameter) were generated from bubble collapse, while in the latter mode, a larger bubble (of up to 200 μm in diameter) at the end of a liquid–vapor jet issuing from the wire departed and then returned to the wire surface. The numerical simulations conducted show that the isolated bubble return is caused by large temperature gradients in the vicinity of the wire which lead to Marangoni flows and result in a strong thrust force driving the bubble back to the wire. Existence of large temperature gradients close to the microwire surface was demonstrated by experimental measurements, confirming numerical predictions. The numerical model accounts for the influence of noncondensable gas on the vapor saturation temperature as well as the interfacial condensation coefficient. The presence of noncondensable gas facilitates bubble return.  相似文献   

19.
Spray water cooling is an important technology used in industry for the cooling of materials from temperatures up to 1800 K. The heat transfer coefficient in the so-called steady film boiling regime is known to be a function of the water impact density. Below a specific surface temperature TL, the heat transfer coefficient shows a strong dependence on temperature (Leidenfrost effect). These findings are the results of complex self-organizing two-phase boiling heat transfer phenomena.The heat transfer coefficient was measured by an automated cooling test stand (instationary method) under clean (non-oxidizing) surface conditions. Compared to the common thought, an additional temperature dependency in the high temperature regime was found. The heat transfer from the material to the outflowing spray water is explained by a simple model of the two-phase flow region. From the experimental data, an analytic correlation for the dependence of the heat transfer coefficient α as an analytic function of water impact density VS and temperature ΔT is provided.For water temperatures around 291 K, surface temperatures between 473 and 1373 K, i.e. ΔT > 180 K and water impact densities between VS = 3 and 30 kg/(m2 s) the heat transfer coefficient α was measured. The spray was produced with full cone nozzles (vd  13–15 m/s, dd  300–400 μm).  相似文献   

20.
Boiling phenomena are an important aspect in security and efficiency for technical applications with high heat flux like nuclear reactors. This study presents optical coherence tomography (OCT) as a novel modality for three-dimensional and two-dimensional time resolved imaging of nucleate boiling on heated surfaces on a microscopic scale with high spatial (<10 μm) and temporal (>25 frames per second) resolution. Within this study, a borosilicate glass plate coated with an optically transparent and electrically conductive indium tin oxide (ITO) layer with a thickness of approximately 100 nm was used as heating surface. The combination of these two properties allows optical inspection of the nucleate boiling from the backside by OCT focused on the formation, growth and detachment of single bubbles. We demonstrated for the first time that OCT is an excellent tool to acquire two-dimensional and three-dimensional images of the base of vapor bubbles from the backside of the heated surface. The acquired images allow for instance the temporally resolved measurement of the bubble diameter, diameter of the bubble base and the contact angle. Exploiting the phase information of the acquired OCT signal stacks allows imaging the movement of the bubble surrounding fluid. We think that OCT will provide many new insights into the boiling phenomena at the bubble base. The recent enhancement of the acquisition rates of OCT systems will facilitate four-dimensional imaging of single bubble evaporation procedures in the nearer future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号