首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A two-dimensional, two-phase, non-isothermal model was developed for an active, tubular, liquid-feed direct methanol fuel cell (DMFC). The liquid-gas, two-phase mass transport in the porous anode and cathode was formulated based on the multi-fluid approach in the porous media. The two-phase mass transport in the anode and cathode channels was modeled using the drift-flux and the homogeneous mist-flow models, respectively. Water and methanol crossovers through the membrane were considered due to the effects of diffusion, electro-osmotic drag, and convection. The model enabled a numerical investigation of the effects of various operating parameters, such as current density, methanol flow rate, and oxygen flow rate, on the mass and heat transport characteristics in the tubular DMFC. It was shown that by choosing a proper tube radius and distance between the adjacent cells, a tubular DMFC stack can achieve a much higher energy density compared to its planar counterpart. The results also showed that a large anode flow rate is needed in order to avoid severe blockage of liquid methanol to the anode electrode due to the gas accumulation in the channel. Besides, lowering the flow rate of either the methanol solution or air can lead to a temperature increase along the flow channel. The methanol and water crossovers are nearly independent of the methanol flow rate and the air flow rate.  相似文献   

2.
Water transport in a vapor feed direct methanol fuel cell was improved by fixing a hydrophobic air filter (HAF) at the cathode. Effects of the HAF properties and the fixed positions, i.e., just on the cathode surface or by providing a certain space from the surface, of the HAF on the water transport as well as the power generation performance were investigated. The water transport was evaluated by measuring the partial pressure of water, PH2O, and methanol, PCH3OH, at the anode gas layer using in situ mass spectrometry with a capillary probe and also the water and methanol fluxes across the electrode structure using a conventional method. The HAF with the highest hydrophobicity and the highest flow resistance had the strongest effect on increasing the water back diffusion from the cathode to the anode through the membrane and increasing the current density. It was noted that the HAF fixation by providing a space from the cathode surface was more effective in increasing JWCO and the current density than that of the direct placement on the cathode surface. There was an optimum distance for the HAF placement depending on the humidity of the outside air.  相似文献   

3.
Water management is an important challenge in portable direct methanol fuel cells. Reducing the water and methanol loss from the anode to the cathode enables the use of highly concentrated methanol solutions to achieve enhanced performances. In this work, the results of a simulation study using a previous developed model for DMFCs are presented. Particular attention is devoted to the water distribution across the cell. The influence of different parameters (such as the cathode relative humidity (RH), the methanol concentration and the membrane, catalyst layer and diffusion media thicknesses) over the water transport and on the cell performance is studied. The analytical solutions of the net water transport coefficient, for different values of the cathode relative humidity are successfully compared with recent published experimental data putting in evidence that humidified cathodes contribute to a decrease on the water crossover. As a result of the modelling results, a tailored MEA build-up with the common available commercial materials is proposed to achieve low methanol and water crossover and high power density, operating at relatively high methanol concentrations. A thick anode catalyst layer to promote methanol oxidation, a thin anode gas diffusion layer as methanol carrier to the catalyst layer and a thin polymer membrane to lower the water crossover coefficient between the anode and cathode are suggested.  相似文献   

4.
In this work, a one-dimensional, isothermal two-phase mass transport model is developed to investigate the water transport through the membrane electrode assembly (MEA) for liquid-feed direct methanol fuel cells (DMFCs). The liquid (methanol–water solution) and gas (carbon dioxide gas, methanol vapor and water vapor) two-phase mass transport in the porous anode and cathode is formulated based on classical multiphase flow theory in porous media. In the anode and cathode catalyst layers, the simultaneous three-phase (liquid and vapor in pores as well as dissolved phase in the electrolyte) water transport is considered and the phase exchange of water is modeled with finite-rate interfacial exchanges between different phases. This model enables quantification of the water flux corresponding to each of the three water transport mechanisms through the membrane for DMFCs, such as diffusion, electro-osmotic drag, and convection. Hence, with this model, the effects of MEA design parameters on water crossover and cell performance under various operating conditions can be numerically investigated.  相似文献   

5.
A mathematical model is developed to simulate the fundamental transport phenomena in a passive direct methanol fuel cell (DMFC) operating with neat methanol. The neat methanol operation is realized by using a ‘pervaporation’ membrane that allows the methanol concentration from the neat methanol in the fuel reservoir to be declined to an appropriate level in the anode catalyst layer (CL). The water required by the methanol oxidation reaction on the anode is passively obtained by diffusion from the cathode through the membrane. The numerical results indicate that the methanol delivery rate from the fuel reservoir to the anode CL is predominately controlled by the pervaporation process. It is also found that under the neat methanol operating condition, water distribution across the membrane electrode assembly is greatly influenced by the membrane thickness, the cathode design, the operating temperature, and the ambient relative humidity.  相似文献   

6.
Despite serious methanol crossover issues in Direct Methanol Fuel Cells (DMFCs), the use of high-concentration methanol fuel is highly demanded to improve the energy density of passive fuel DMFC systems for portable applications. In this paper, the effects of a hydrophobic anode micro-porous layer (MPL) and cathode air humidification are experimentally studied as a function of the methanol-feed concentration. It is found in polarization tests that the anode MPL dramatically influences cell performance, positively under high-concentration methanol-feed but negatively under low-concentration methanol-feed, which indicates that methanol transport in the anode is considerably altered by the presence of the anode MPL. In addition, the experimental data show that cathode air humidification has a beneficial effect on cell performance due to the enhanced backflow of water from the cathode to the anode and the subsequent dilution of the methanol concentration in the anode catalyst layer. Using an advanced membrane electrode assembly (MEA) with the anode MPL and cathode air humidification, we report that the maximum power density of 78 mW/cm2 is achieved at a methanol-feed concentration of 8 M and cell operating temperature of 60 °C. This paper illustrates that the anode MPL and cathode air humidification are key factors to successfully operate a DMFC with high-concentration methanol fuel.  相似文献   

7.
In determining the liquid water distribution in the anode (or the cathode) diffusion medium of a liquid-feed direct methanol fuel cell (DMFC) with a conventional two-phase mass transport model, a current-independent liquid saturation boundary condition at the interface between the anode flow channel and diffusion layer (DL) (or at the interface between the cathode flow channel and cathode DL) needs to be assumed. The numerical results resulting from such a boundary condition cannot realistically reveal the liquid distribution in the porous region, as the liquid saturation at the interface between the flow channel and DL varies with current density. In this work, we propose a simple theoretical approach that is combined with the in situ measured water-crossover flux in the DMFC to determine the liquid saturation in the anode catalyst layer (CL) and in the cathode CL. The determined liquid saturation in the anode CL (or in the cathode CL) can then be used as a known boundary condition to determine the water distribution in the anode DL (or in the cathode DL) with a two-phase mass transport model. The numerical results show that the water distribution becomes much more realistic than those predicted with the assumed boundary condition at the interface between the flow channel and DL.  相似文献   

8.
A unified two-phase flow mixture model has been developed to describe the flow and transport in the cathode for PEM fuel cells. The boundary condition at the gas diffuser/catalyst layer interface couples the flow, transport, electrical potential and current density in the anode, cathode catalyst layer and membrane. Fuel cell performance predicted by this model is compared with experimental results and reasonable agreements are achieved. Typical two-phase flow distributions in the cathode gas diffuser and gas channel are presented. The main parameters influencing water transport across the membrane are also discussed. By studying the influences of water and thermal management on two-phase flow, it is found that two-phase flow characteristics in the cathode depend on the current density, operating temperature, and cathode and anode humidification temperatures.  相似文献   

9.
A passive vapor-feed direct methanol fuel cell (DMFC) was experimentally investigated to improve its water management and cell performance when neat methanol was directly used. The effects of different water management approaches, including the addition of a water management layer (WML) and a hydrophobic air filter layer (AFL), and the use of thinner membrane on the cell performance, internal resistance, and fuel efficiency were investigated. The transient discharging behavior and long-term stability of the passive vapor-feed DMFC with the optimized water management were also studied. The results showed that by adding a WML and an AFL, or thinning the membrane thickness, the water management capability can be highly improved, not only enhancing the water recovery from the cathode to the anode, leading to a lower internal resistance and better cell performance, but also curbing the methanol crossover, increasing the fuel efficiency. It is also seen from the long-term constant-voltage test that the discharged current varied with the methanol concentration in the tank and the ambient temperature, while no evident permanent performance degradation was encountered after the 150 h test.  相似文献   

10.
The water required for the methanol oxidation reaction in a direct methanol fuel cell (DMFC) operating with neat methanol can be supplied by diffusion from the cathode to the anode through the membrane. In this work, we present a method that allows the water transport rate through the membrane to be in-situ determined. With this method, the effects of the design parameters of the membrane electrode assembly (MEA) and operating conditions on the water transport through the membrane are investigated. The experimental data show that the water flux by diffusion from the cathode to the anode is higher than the opposite flow flux of water due to electro-osmotic drag (EOD) at a given current density, resulting in a net water transport from the cathode to the anode. The results also show that thinning the anode gas diffusion layer (GDL) and the membrane as well as thickening the cathode GDL can enhance the water transport flux from the cathode to the anode. However, a too thin anode GDL or a too thick cathode GDL will lower the cell performance due to the increases in the water concentration loss at the anode catalyst layer (CL) and the oxygen concentration loss at the cathode CL, respectively.  相似文献   

11.
The passive operation of a direct methanol fuel cell with neat methanol requires the water that is produced at the cathode to diffuse through the membrane to the anode to compensate the methanol oxidation reaction (MOR). Hence, the anode performance of this type of fuel cell can be limited by the water transport rate from the cathode to the anode. In this work we theoretically show that the water transport from the cathode to the anode depends primarily on the design of the cathode gas diffusion layer (GDL). We investigate experimentally the effects of the design parameters of the cathode GDL, including the PTFE (polytetrafluoroethylene) content in the backing layer (BL), and the carbon loading and the PTFE content in the microporous layer (MPL) on the water transport and the performance of the passive DMFC with the help of a reference electrode. The results indicate that on one hand, these parameters can be adjusted to decrease the water concentration loss of the anode performance, but on the other hand, they can also cause an increase in the oxygen concentration loss of the cathode performance. Hence, an optimal balance in minimizing the both concentration losses is the key to maximize the cell performance.  相似文献   

12.
Reducing methanol crossover from the anode to cathode in direct methanol fuel cells (DMFCs) is critical for attaining high cell performance and fuel utilization, particularly when highly concentrated methanol fuel is fed into DMFCs. In this study, we present a novel design of anode diffusion media (DM) wherein spatial variation of hydrophobicity along the through-plane direction is realized by special polytetrafluoroethylene (PTFE) coating procedure. According to the capillary transport theory for porous media, the anode DM design can significantly affect both methanol and water transport processes in DMFCs. To examine its influence, three different membrane-electrode assemblies are fabricated and tested for various methanol feed concentrations. Polarization curves show that cell performance at high methanol feed concentration conditions is greatly improved with the anode DM design with increasing hydrophobicity toward the anode catalyst layer. In addition, we investigate the influence of the wettability of the anode microporous layer (MPL) on cell performance and show that for DMFC operation at high methanol feed concentration, the hydrophilic anode MPL fabricated with an ionomer binder is more beneficial than conventional hydrophobic MPLs fabricated with PTFE. This paper highlights that controlling wetting characteristics of the anode DM and MPL is of paramount importance for mitigating methanol crossover in DMFCs.  相似文献   

13.
Use of highly concentrated methanol fuel is required for direct methanol fuel cells (DMFCs) to compete with the energy density of Li-ion batteries. Because one mole of H2O is needed to oxidize one mole of methanol (CH3OH) in the anode, low water crossover to the cathode or even water back flow from the cathode into the anode is a prerequisite for using highly concentrated methanol. It has previously been demonstrated that low or negative water crossover can be realized by the incorporation of a low-α membrane electrode assembly (MEA), which is essentially an MEA designed for optimal water management, using, e.g. hydrophobic anode and cathode microporous layers (aMPL and cMPL). In this paper we extend the low-α MEA concept to include an anode transport barrier (aTB) between the backing layer and hydrophobic aMPL. The main role of the aTB is to act as a barrier to CH3OH and H2O diffusion between a water-rich anode catalyst layer (aCL) and a methanol-rich fuel feed. The primary role of the hydrophobic aMPL in this MEA is to facilitate a low (or negative) water crossover to the cathode. Using a previously developed 1D, two-phase DMFC model, we show that this novel design yields a cell with low methanol crossover (i.e. high fuel efficiency, ∼80%, at a typical operating current density of ∼80-90% of the cell limiting current density), while directly feeding high concentration methanol fuel into the anode. The physics of how the aTB and aMPL work together to accomplish this is fully elucidated. We further show that a thicker, more hydrophilic, more permeable aTB, and thicker, more hydrophobic, and less permeable aMPL are most effective in accomplishing low CH3OH and H2O crossover.  相似文献   

14.
A transient, two-dimensional two-phase mass transport model is applied to investigate the cell dynamic operating behaviors of a liquid-feed direct methanol fuel cell (DMFC). The influences of various processes on the cell dynamics in response to sudden change of cell current density, methanol feed concentration, oxygen feed concentration, and the transient gas-slug blocking in the anode channel are studied. The results reveal that in response to the sudden drop of cell current density and methanol concentration, the cell voltage exhibits overshooting behavior as a result of the interaction between cathode and anode overpotentials with different time responses. The dominant factor causing the long response of cell voltages is the methanol rebalance in the membrane electrode assembly, which usually takes tens of seconds because of the sluggish methanol transport process. Also, it is indicated that in response to temporary blocking of anode diffusion layer surface with gas slug, the cell can still operate normally for a while because the anode diffusion layer serves as the fuel reservoir. It takes over a minute for the cell to break down in this case studied, implying that the cell output can be maintained stable if the gas bubbles or slugs in the anode channel can be removed quickly. However, too long residence time of gas slug in the channel definitely degrades the cell performance.  相似文献   

15.
The regulation of mass transport through anode diffusion layer is one of the major issue of direct methanol fuel cell. In fact it is critical to maintain an adequate methanol concentration in the anode electrode such that both the rate of methanol crossover and the mass transport loss can be minimized. In the present work the effect of anode micro-porous layer on system operation is investigated both experimentally and theoretically. The developed 2D two-phase isothermal model is validated with respect to three different typologies of measure at the same time, increasing results reliability. Model simulations highlight that anode micro-porous layer can cause an inversion of water diffusion flux through the membrane and enhances methanol gas diffusion mechanism, reducing methanol crossover. Finally the developed model is used as a tool to design an optimized anode diffusion layer.  相似文献   

16.
In this investigation, water in a single-cell proton exchange membrane (PEM) fuel cell was managed using saturated hydrogen and dry air. The experiment was conducted at temperatures of 40, 50 and 60 °C and pressures of 1 and 1.5 bar at both the anode and cathode gas inlets. The feed velocities of hydrogen and air were fixed at 3 and 6 L min−1, respectively. After reaching steady-state conditions, the relative humidity along the single serpentine gas channel was measured. From the experimental data, water transport properties were characterized based on a membrane hydration model. The electro-osmotic drag coefficient, water diffusion coefficient, membrane ionic conductivity and water back-diffusion flux were significantly influenced by the water content in the membrane of the PEM fuel cell. The water content depended on the relative humidity profile along the gas channel. In this investigation, a negative value for the water back-diffusion flux was measured; thus, the transport of water from the cathode to the anode did not occur. This phenomenon was due to the large water concentration gradient between the anode and cathode. Therefore, this strategy successfully prevented flooding in the PEM fuel cell.  相似文献   

17.
An algebraic model of the membrane electrode assembly of the direct methanol fuel cell is developed, which considers the simultaneous liquid water and methanol crossover effects, and the associated electrochemical reactions. The respective anodic and cathodic polarization curves can be predicted using this model. Methanol concentration profile and flux are correlated explicitly with the operating conditions and water transport rate. The cathode mixed potential effect induced by the methanol crossover is included and the subsequent cell voltage loss is identified. Water crossover is influenced by the capillary pressure equilibrium and hydrophobic property within the cathode gas diffusion layer. The model can be used to evaluate the cell performance at various working parameters such as membrane thickness, methanol feed concentration, and hydrophobicity of the cathode gas diffuser.  相似文献   

18.
Parameter sensitivity analysis is carried out for a complete three-dimensional, two-phase, non-isothermal model of polymer electrolyte membrane (PEM) fuel cell with a parallel flow field design. The model couples the two-phase flow of the multi-component reactants and liquid water, species transport, electrochemical reactions, proton and electron transport, and the electro-osmosis transport, back diffusion of water in the membrane, and energy transport. Twenty nine parameters, which are classified into the structural or transport parameters of porous layers (tortuosity, porosity, permeability, proton conductivity, electron conductivity, and thermal conductivity) as well as the electrochemical parameters (anodic and cathodic exchange current densities, anodic and cathodic transfer coefficients for anode and cathode reactions), are used to implement individual parameter investigation. The results show the parameters can be divided in to strongly sensitive, conditional sensitive and weak sensitive parameters according to its effect on the cell polarization curve. The optimization of parameters of cathode gas diffusion layer (GDL) and catalyst layer (CL) is more important to improve cell performance than that of anode GDL and CL because liquid water transport and removal affect significantly membrane hydration and reactant transport. Electrochemical parameters determine the activation potential and the slope of ohmic polarization hence these parameters can be used to fit experimental polarization curve more effectively than the other parameters.  相似文献   

19.
20.
A three-dimensional, two-phase, multi-component model has been developed for a liquid-fed DMFC. The modeling domain consists of the membrane, two catalyst layers, two diffusion layers, and two channels. Both liquid and gas phases are considered in the entire anode, including the channel, the diffusion layer and the catalyst layer; while at the cathode, two phases are considered in the gas diffusion layer and the catalyst layer but only single gas phase is considered in the channels. For electrochemical kinetics, the Tafel equation incorporating the effects of two phases is used at both the cathode and anode sides. At the anode side the presence of gas phase reduces the active catalyst areas, while at the cathode side the presence of liquid water reduces the active catalyst areas. The mixed potential effects due to methanol crossover are also included in the model. The results from the two-phase flow mode fit the experimental results better than those from the single-phase model. The modeling results show that the single-phase models over-predict methanol crossover. The modeling results also show that the porosity of the anode diffusion layer plays an important role in the DMFC performance. With low diffusion layer porosity, the produced carbon dioxide cannot be removed effectively from the catalyst layer, thus reducing the active catalyst area as well as blocking methanol from reaching the reaction zone. A similar effect exits in the cathode for the liquid water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号