首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Latent thermal energy storage system (LTES) is an integral part of concentrating solar power (CSP) plants for storing sun’s energy during its intermittent diurnal availability in the form of latent heat of a phase change material (PCM). The advantages of an LTES include its isothermal operation and high energy storage density, while the low thermal conductivity of the PCM used in LTES poses a significant disadvantage due to the reduction in the rate at which the PCM can be melted (charging) or solidified (discharging). The present study considers an approach to reducing the thermal resistance of LTES through embedding heat pipes to augment the energy transfer from the heat transfer fluid (HTF) to the PCM. Using a thermal resistance network model of a shell and tube LTES with embedded heat pipes, detailed parametric studies are carried out to assess the influence of the heat pipe and the LTES geometric and operational parameters on the performance of the system during charging and discharging. The physical model is coupled with a numerical optimization method to identify the design and operating parameters of the heat pipe embedded LTES system that maximizes energy transferred, energy transfer rate and effectiveness.  相似文献   

2.
Latent heat thermal energy storage (LHTES) utilizing heat pipes or fins is investigated experimentally. Photographic observations, melting and solidification rates, and PCM energy storage quantities are reported. Heat pipe effectiveness is defined and used to quantify the relative performance of heat pipe-assisted and fin-assisted configurations to situations involving neither heat pipes nor fins. For the experimental conditions of this study, inclusion of heat pipes increases PCM melting rates by approximately 60%, while the fins are not as effective. During solidification, the heat pipe-assisted configuration transfers approximately twice the energy between a heat transfer fluid and the PCM, relative to both the fin-assisted LHTES and the non-heat pipe, non-fin configurations.  相似文献   

3.
Energy analysis of space solar dynamic heat receivers employing solid–liquid phase change storage is developed. The heat receiver is a critical component of a solar dynamic system. Phase change thermal energy storage is used in the heat receiver. The energy analysis presented here can be used to understand the energy transfer in the heat receiver and thermal energy storage in phase change materials (PCM). The heat receiver cavity radiation mathematical model and the working fluid tube heat model are established. Energy loss, energy absorbed by gas, the latent and sensible thermal energy storage in PCM, maximum tube temperature, gas outlet temperature and liquid PCM fraction were calculated. The results are analyzed and could be used in heat receiver design.  相似文献   

4.
Long Jian-you 《Solar Energy》2008,82(11):977-985
This paper addresses a numerical and experimental investigation of a thermal energy storage unit involving phase change process dominated by heat conduction. The thermal energy storage unit involves a triplex concentric tube with phase change material (PCM) filling in the middle channel, with hot heat transfer fluid (HHTF) flowing outer channel during charging process and cold heat transfer fluid (CHTF) flowing inner channel during discharging process. A simple numerical method according to conversation of energy, called temperature & thermal resistance iteration method has been developed for the analysis of PCM solidification and melting in the triplex concentric tube. To test the physical validity of the numerical results, an experimental apparatus has been designed and built by which the effect of the inlet temperature and the flow rate of heat transfer fluid (HTF, including HHTF and CHTF) on the thermal energy storage has been studied. Comparison between the numerical predictions and the experimental data shows good agreement. Graphical results including fluid temperature and interface of solid and liquid phase of PCM versus time and axial position, time-wise variation of energy stored/released by the system were presented and discussed.  相似文献   

5.
A preliminary model for estimating possible thermal energy storage in a phase change shell and tube heat exchanger is presented. Effect of various parameters such as thermal and physical properties of PCM and convective fluid, heat exchanger dimensions and heat transfer fluid flow rates both in laminar and turbulent regime on energy storage times are discussed. The model is illustrated for specific cases.  相似文献   

6.
A horizontal double-pipe heat exchanger with an inverted outer equilateral triangular tube is modeled to numerically investigate the low-temperature thermal energy storage capability of an impure phase change material (PCM). The energy source fluid (hot water) flows through the inner tube and transfers heat to the PCM (heat sink) residing in the annular gap. The results show that the inlet temperature of the heat transfer fluid (HTF) has a significant effect on the melting process compared with the mass flow rate (MFR). The configuration, as well the concentricity/eccentricity of the inner tube has a great influence on the energy storage.  相似文献   

7.
The phase change and heat transfer characteristics of a eutectic mixture of palmitic and stearic acids as phase change material (PCM) during the melting and solidification processes were determined experimentally in a vertical two concentric pipes energy storage system. This study deals with three important subjects. First is determination of the eutectic composition ratio of the palmitic acid (PA) and stearic acid (SA) binary system and measurement of its thermophysical properties by differential scanning calorimetry (DSC). Second is establishment of the phase transition characteristics of the mixture, such as the total melting and solidification temperatures and times, the heat transfer modes in the melted and solidified PCM and the effect of Reynolds and Stefan numbers as initial heat transfer fluid (HTF) conditions on the phase transition behaviors. Third is calculation of the heat transfer coefficients between the outside wall of the HTF pipe and the PCM, the heat recovery rates and heat fractions during the phase change processes of the mixture and also discussion of the effect of the inlet HTF parameters on these characteristics. The DSC results showed that the PA–SA binary system in the mixture ratio of 64.2:35.8 wt% forms a eutectic, which melts at 52.3 °C and has a latent heat of 181.7 J g−1, and thus, these properties make it a suitable PCM for passive solar space heating and domestic water heating applications with respect to climate conditions. The experimental results also indicated that the eutectic mixture of PA–SA encapsulated in the annulus of concentric double pipes has good phase change and heat transfer characteristics during the melting and solidification processes, and it is an attractive candidate as a potential PCM for heat storage in latent heat thermal energy storage systems.  相似文献   

8.
Micro‐phase change materials (micro‐PCMs) are proposed to increase the thermal conductivity and the thermal energy storage capacity of a heat transfer fluid (HTF). In this work, we have selected dimethyl terephthalate (DMT) to be used as a PCM for performance enhancement of a synthetic oil in the temperature range of approximately 100 to 170 °C. Silicon dioxide (SiO2) was used as the microencapsulant, because of its desirable properties as containment material, including thermal stability. The SiO2‐coated DMT micro‐PCM was characterized to determine relevant properties and its suitability for HTF performance enhancement. The SiO2‐coated DMT was found to completely disperse in the synthetic oil, Therminol SP, silicone oil, at and above 100 °C. FTIR, thermal diffusivity and differential scanning calorimetry measurements were carried out on the materials, and these tests demonstrated that the coated particles can be used for HTF enhancement in the temperature range of 100–170 °C and potentially higher temperatures if pressurized pipes/vessels are utilized. Using the measured thermal diffusivity and known data for density and specific heat capacity, the thermal conductivity of the micro‐PCM was calculated. Our calculations indicate that both the thermal conductivity and the thermal energy storage heat capacity of the HTF would be enhanced by the addition of this micro‐PCM. It is expected that the thermal conductivity increase will enhance the heat transfer of the fluid when in use at temperatures above and below the melting temperature of the PCM. At the melting point, the latent heat of the PCM will increase the thermal energy storage capacity of the fluid. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Employment of latent heat storage unit (LHSU) utilizing phase change material (PCM) in a substantial scale is constrained by the poor thermal conductivity of PCMs. Future utilization of LHSU will therefore to a great extent rely on the heat transfer intensification techniques. Present research is on enhancement techniques in which heat transfer mechanism is altered without altering the mass of PCM and heat transfer surface area. The intensification mechanisms considered in the present research include imparting eccentricity to heat transfer fluid (HTF) pipe, imparting rotation to the LHSU and providing multi HTF tube. Numerical investigations are reported here towards comparative evaluation of the thermal characteristics associated with such intensification mechanisms for horizontal LHSU. In the present study stearic acid (melting point 55.7–56.6?°C) is used as PCM and water is used as HTF. Results infer that all the three mechanisms offer quicker melting rate. For the geometric configuration of LHSU considered in the present research, a reduction in melting time of 47.75% is evaluated for rotating LHSU. The rate of energy storage is higher for both eccentric and rotating LHSU. Solidification process is however not accelerated by such techniques. On the contrary, eccentric and multi HTF tube LHSU takes more time for solidification.  相似文献   

10.
A numerical and experimental investigation of phase change process dominated by heat conduction in a thermal storage unit is presented in this paper. The thermal energy storage involves a shell and tube arrangement where paraffin wax as phase change material (PCM) is filled in the shell. Water as heat transfer fluid (HTF) is passed inside the tube for both charging and discharging cycles. According to the conservation of energy, a simple numerical method called alternative iteration between thermal resistance and temperature has been developed for the analysis of heat transfer between the PCM and HTF during charging and discharging cycles. Experimental arrangement has been designed and built to examine the physical validity of the numerical results. Comparison between the numerical predictions and the experimental data shows a good agreement. A detailed parametric study is also carried out for various flow parameters and system dimensions such as different mass flow rates, inlet temperatures of HTF, tube thicknesses and radii. Numerical study reveals that the contribution of the inlet temperature of HTF has much influence than mass flow rate in terms of storage operating time and HTF outlet temperature. Tube radius is a more important parameter than thickness for better heat transfer between HTF and PCM.  相似文献   

11.
The heat transfer characteristics of a low temperature latent heat storage system have been determined for circular finned and unfinned tubes using sodium acetate trihydrate as a phase change material (PCM). In the heat recovery stage, supercooling of PCM in the finned-tube system is larger than that in the unfinned-tube system. The heat-transfer coefficient between the PCM and the heat-transfer tube surface can be predicted from the steady-state heat conduction equation except the beginning of freezing with some degree of supercooling. The heat transfer is significantly reduced by the void cavities upon shrinkage of PCM in the finned-tube system. The enhancement of heat transfer by thin finned-tube over the unfinned-tube is found to be negligible. The heat-transfer coefficient in the thick finned-tube system is approximately two times higher than that in the unfinned-tube system. The heat transfer coefficients for the unfinned-tube and thick finned-tube systems are found to be 45 150 W/m2-K and 90 250 W/m2-K, respectively. The thermal performance for three different tube systems is found to be strongly affected by the inlet temperature but not by the flow rate of the heat transfer fluid. The amount of heat recovered has been correlated in terms of the Fourier, Stefan, and Reynolds numbers.  相似文献   

12.
Due to the complexity of the fluid flow and heat transfer in packed bed latent thermal energy storage (LTES) systems, many hypotheses were introduced into the previous packed bed models, which consequently influenced the accuracy and authenticity of the numerical calculation. An effective packed bed model was therefore developed, which could investigate the flow field as the fluid flows through the voids of the phase change material (PCM), and at the same time could account for the thermal gradients inside the PCM spheres. The proposed packed bed model was validated experimentally and found to accurately describe the thermo-fluidic phenomena during heat storage and retrieval. The proposed model was then used to do a parametric study on the influence of the arrangement of the PCM spheres and encapsulation of PCM on the heat transfer performance of LTES bed, which was difficult to perform with the previous packed bed models. The results indicated that random packing is more favorable for heat storage and retrieval as compared to special packing; both the material and the thickness of the encapsulation have the apparent effects on the heat transfer performance of the LTES bed.  相似文献   

13.
The charging and discharging rates of a phase change material (PCM) in a horizontal latent heat storage unit (LHSU) is largely influenced by the lower thermal conductivity of the PCM. In the present research, four different configurations of longitudinal fins are proposed to augment the heat transfer in horizontal shell and tube type LHSUs. Numerical investigations are reported to establish the thermal performance augmentation with rectangular, triangular, and Y‐shaped (bifurcated) fins. From the results, it has been inferred that all fin configurations provide a faster charging and discharging rate. In the present set of geometric dimensions of LHSU considered, a reduction in charging time of 68.71% is evaluated for case III (three rectangular fins with one fin positioned in the area of the heat transfer fluid [HTF] surface) and case V (two bifurcated fins with one fin positioned in the area of the HTF surface). Moreover, overall cycle (charging + discharging) time is reduced by 58.3% for case III. Employment of fins results in a faster rate of absorption and extraction of energy from the PCM.  相似文献   

14.
管内流体流动管外PCM发生相变的贮能系统热性能研究   总被引:1,自引:1,他引:1  
施伟  葛新石 《太阳能学报》2004,25(4):497-502
建立了分析空调贮能系统中管内流体流动管外PCM发生相变的相变的贮能器热性能的数学模型,并进行了数值计算。其中,把传热流体看作是沿轴向的—维无粘流动,对PCM相变过程的求解用显热容法。计算结果与文献中的计算结果吻合较好。所得结论对该类贮能系统的设计和性能优化有一定指导作用。  相似文献   

15.
Thermal energy storage is critical for reducing the discrepancy between energy supply and energy demand, as well as for improving the efficiency of solar thermal energy systems. Among the different types of thermal energy storage, phase-change materials (PCM) thermal energy storage has gained significant attention recently because of its high energy density per unit mass/volume at nearly constant temperature. This study experimentally investigates the using of a triplex tube heat exchanger (TTHX) with PCM in the middle tube as the thermal energy storage to power a liquid desiccant air-conditioning system. Four longitudinal fins were welded to each of the inner and middle tubes as a heat transfer enhancement in the TTHX to improve the thermal performance of the thermal energy storage. The average temperature of the PCM during the melting process in the TTHX with and without fins was compared. The PCM temperature gradients in the angular direction were analyzed to study the effect of the natural convection in the melting process of the thermal storage. The energy storage efficiency of the TTHX was determined. Results indicated that there was a considerable enhancement in the melting rate by using fins in the TTHX thermal storage. The PCM melting time is reduced to 86% by increasing of the inlet heat transfer fluid. The average heat storage efficiency calculated from experimental data for all the PCMs is 71.8%, meaning that 28.2% of the heat actually was lost.  相似文献   

16.
Efficient application of intermittent renewable energy sources, like solar, waste heat recovery, and so forth, depends on a large extent on the thermal energy storage methods. Latent heat energy storage with the use of phase‐change material (PCM) is the most promising one because it stores large energy in the form of latent heat at a constant temperature. The current study investigates melting and solidification of PCM in the triplex tube heat exchanger (TTHX) numerically. The two‐dimensional numerical model has been developed using Ansys Fluent 16.2, which considers the effects of conduction as well as natural convection. To overcome the limitation imposed by the poor thermal conductivity of PCM, use of fins is the better solution. In the current study, longitudinal fins are used for better performance of TTHX, which increases heat‐transfer area between PCM and heat‐transfer fluid. The effects of location of fins, that is, internal, external, and combined internal‐external fins, are observed. All three configurations improve melting as well as solidification process. During the melting process, internal and combined internal‐external fins are equally efficient, in which maximum 59% to 60% reduction in melting time is achieved. For solidification, internal‐external fins combination gives maximum 58% reduction in solidification time.  相似文献   

17.
The objective of the present work is to investigate experimentally the thermal behavior of a packed bed of combined sensible and latent heat thermal energy storage (TES) unit. A TES unit is designed, constructed and integrated with constant temperature bath/solar collector to study the performance of the storage unit. The TES unit contains paraffin as phase change material (PCM) filled in spherical capsules, which are packed in an insulated cylindrical storage tank. The water used as heat transfer fluid (HTF) to transfer heat from the constant temperature bath/solar collector to the TES tank also acts as sensible heat storage (SHS) material. Charging experiments are carried out at constant and varying (solar energy) inlet fluid temperatures to examine the effects of inlet fluid temperature and flow rate of HTF on the performance of the storage unit. Discharging experiments are carried out by both continuous and batchwise processes to recover the stored heat. The significance of time wise variation of HTF and PCM temperatures during charging and discharging processes is discussed in detail and the performance parameters such as instantaneous heat stored and cumulative heat stored are also studied. The performance of the present system is compared with that of the conventional SHS system. It is found from the discharging experiments that the combined storage system employing batchwise discharging of hot water from the TES tank is best suited for applications where the requirement is intermittent.  相似文献   

18.
A computational fluid dynamics (CFD) model was developed for the simulation of a phase change thermal energy storage process in a 100 l cylindrical tank, horizontally placed. The model is validated with experimental data obtained for the same configuration. The cold storage unit was charged using water as the heat transfer medium, flowing inside a horizontal tube bundle, and the selected phase change material (PCM) was microencapsulated slurry in 45% w/w concentration. The mathematical model is based on the three-dimensional transient Navier–Stokes equations with nonlinear temperature dependent thermo-physical properties of the PCM during the phase change range. These properties were experimentally determined using analytical methods. The governing equations were solved using the ANSYS/FLUENT commercial software package. The mathematical model is validated with experimental data for three different flow rates of the heat transfer fluid during the charging process. Bulk temperature, heat transfer rate and amount of energy stored were used as performance indicators. It was found that the PCM bulk temperatures were predicted within 5% of the experimental data. The results have also shown that the total accumulated energy was within 10% of the observed value, and thus it can be concluded that the model predicts the heat transfer inside the storage system with good accuracy.  相似文献   

19.
The cylindrical latent heat storage tanks considered here are part of a domestic heating system. In this study, the performances of such energy storage tanks are optimized theoretically. Two different models describing the diurnal transient behaviour of the phase change unit were used. The first is suited to tanks where the phase change material (PCM) is packed in cylinders and the heat transfer fluid (HTF) flows parallel to it (mode 1). The second is suited to tanks where pipes containing the fluid are embedded in the PCM (mode 2). The problem (treated as two-dimensional) is tackled with an enthalpy-based method coupled to the convective heat transfer from the HTF. A series of numerical tests are then undertaken to assess the effects of various PCMs, cylinder radii, pipe radii, total PCM volume in the tank, mass flow rates of fluid, and inlet temperatures of the HTF on the storing time. In addition, optimal geometric design of the store depending on these parameters and PCMs is presented.  相似文献   

20.
An experimental energy storage system has been designed using a horizontal concentric tube heat exchanger incorporating a medium temperature phase change material (PCM) Erythritol, with a melting point of 117.7 °C. Three experimental configurations, a control system with no heat transfer enhancement and systems augmented with circular and longitudinal fins have been studied. The results presented compare the system heat transfer characteristics using isotherm plots and temperature-time curves. The system with longitudinal fins gave the best performance with increased thermal response during charging and reduced subcooling in the melt during discharging. The experimentally measured data for the control, circular finned and longitudinal finned systems have been shown to vindicate the assumption of axissymmetry (direction parallel to the heat transfer fluid flow) using temperature gradients in the axial, radial and angular directions in the double pipe PCM system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号