首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Hydrogen storage systems utilizing high-pressure metal hydrides (HPMHs) require a highly effective heat exchanger to remove the large amounts of heat released once the hydrogen is charged into the system. Aside from removing the heat, the heat exchanger must be able to accomplish this task in an acceptably short period of time. A near-term target for this ‘fill-time’ is less than 5 min. In this two-part study, a new class of heat exchangers is proposed for automobile hydrogen storage systems. The first part discussed the design methodology and a 2-D computational model that was constructed to explore the thermal and kinetic behavior of the metal hydride. This paper discusses the experimental setup and testing of a prototype heat exchanger using Ti1.1CrMn as HPMH storage material. Tests were performed to examine the influence of pressurization profile, coolant flow rate and coolant temperature on metal hydride temperature and reaction rate. The experimental data are compared with predictions of the 2-D model to validate the model, calculate reaction progress and determine fill time. The prototype heat exchanger successfully achieved a fill time of 4 min 40 s with a combination of fast pressurization and low coolant temperature. A parameter termed non-dimensional conductance (NDC) is shown to be an effective tool in designing HPMH heat exchangers and estimating fill times achievable with a particular design.  相似文献   

2.
This study explores the use of a high-pressure metal hydride (HPMH), Ti1.1CrMn, to store hydrogen at high pressures (up to 310 bar) and temperatures below 60 °C, conditions that are suitable for automobile fuel cells. However, the exothermic reaction of hydrogen with this material releases large amounts of heat, and the reaction rate depends on the metal hydride temperature, decreasing significantly if the heat is not removed quickly. Therefore, a powerful heat exchanger constitutes the most crucial component of a HPMH hydrogen storage system. For automobiles, this heat exchanger must enable fueling 5 kg of hydrogen in less than 5 min. This is a formidable challenge considering the enormous amount of heat that must be released and the stringent limits on the heat exchanger’s weight and volume, let alone a host of manufacturing requirements. Unlike conventional heat exchangers that are designed to exchange heat between two fluids, this heat exchanger is quite unique in that it must dissipate heat between a reacting powder and a coolant. In this first of a two-part study, a systematic heat exchanger design methodology is presented, starting with a 1-D criterion and progressing through a series of engineering decisions supported by computations of fill time. A final design is arrived at that meets the 5-min fill time requirement corresponding to minimum heat exchanger mass, supported by a 2-D computational model of the heat exchanger’s thermal and kinetic response.  相似文献   

3.
This two-part study explores the development and thermal performance of a coiled-tube heat exchanger for hydrogen fuel cell storage systems utilizing High-Pressure Metal Hydride (HPMH). The primary purpose of this heat exchanger is to tackle the large amounts of heat released from the exothermic hydriding reaction that occurs when the hydrogen is charged into the storage vessel and is absorbed by the HPMH. The performance of heat exchanger was tested using 4 kg of Ti1.1CrMn at pressures up to 280 bar. Tests were performed to assess the influence of different operating conditions on the effectiveness of the heat exchanger at removing the heat in a practical fill time (time required to complete 90% of the hydriding reaction). It is shown that distance of metal hydride particles from the coolant tube has the most dominant influence on hydriding rate, with particles closer to the tube completing their hydriding reaction sooner. Faster fill times were achieved by reducing coolant temperature and to a lesser extent by increasing pressurization rate. By comparing tests with and without coolant flow, it is shown that the heat exchanger reduces fill time by 75% while occupying only 7% of the storage pressure vessel volume. The second part of this study will present a 3D computational heat transfer model of the storage vessel and heat exchanger, and compare the model predictions to the experimental data.  相似文献   

4.
Low depth geothermal heat exchangers can be efficiently used as a heat sink for building energy produced during summer. If annual average ambient temperatures are low enough, direct cooling of a building is possible. Alternatively the heat exchangers can replace cooling towers in combination with active cooling systems. In the current work, the performance of vertical and horizontal geothermal heat exchangers implemented in two office building climatisation projects is evaluated.A main result of the performance analysis is that the ground coupled heat exchangers have good coefficients of performance ranging from 13 to 20 as average annual ratios of cold produced to electricity used. Best performance is reached, if the ground cooling system is used to cool down high temperature ambient air. The maximum heat dissipation per meter of ground heat exchanger measured was lower than planned and varied between 8 W m?1 for the low depth horizontal heat exchangers up to 25 W m?1 for the vertical heat exchangers.The experimental results were used to validate a numerical simulation model, which was then used to study the influence of soil parameters and inlet temperatures to the ground heat exchangers. The power dissipation varies by ±30% depending on the soil conductivity. The heat conductivity of vertical tube filling material influences performance by another ±30% for different materials. Depending on the inlet temperature level to the ground heat exchanger, the dissipated power increases from 2 W m?1 for direct cooling applications at 20 °C up to 52 W m?1 for cooling tower substitutions at 40 °C. This directly influences the cooling costs, which vary between 0.12 and 2.8€ kW h?1.As a result of the work, planning and operation recommendations for the optimal choice of ground coupled heat exchangers for office building cooling can be given.  相似文献   

5.
It would be misleading to consider only cost aspect of the design of a heat exchanger. High maintenance costs increase total cost during the services life of heat exchanger. Therefore exergy analysis and energy saving are very important parameters in the heat exchanger design. In this study, the effects of surface geometries of three different type heat exchangers called as PHEflat (Flat plate heat exchanger), PHEcorrugated (Corrugated plate heat exchanger) and PHEasteriks (Asterisk plate heat exchanger) on heat transfer, friction factor and exergy loss were investigated experimentally. The experiments were carried out for a heat exchanger with single pass under condition of parallel and counter flow. In this study, experiments were conducted for laminar flow conditions. Reynolds number and Prandtl number were in the range of 50 ? Re ? 1000 and 3 ? Pr ? 7, respectively. Heat transfer, friction factor and exergy loss correlations were obtained according to the experimental results.  相似文献   

6.
For applications such as cooling of electronic devices, it is a common practice to sandwich the thermoelectric module between an integrated chip and a heat exchanger, with the cold-side of the module attached to the chip. This configuration results thermal contact resistances in series between the chip, module, and heat exchanger. In this paper, an appraisal of thermal augmentation of thermoelectric module using nanofluid-based heat exchanger is presented. The system under consideration uses commercially available thermoelectric module, 27 nm Al2O3–H2O nanofluid, and a heat source to replicate the chip. The volume fraction of nanofluid is varied between 0% and 2%. At optimum input current conditions, experimental simulations were performed to measure the transient and steady-state thermal response of the module to imposed isoflux conditions. Data collected from the nanofluid-based exchanger is compared with that of deionized water.Results show that there exist a lag-time in thermal response between the module and the heat exchanger. This is attributed to thermal contact resistance between the two components. A comparison of nanofluid and deionized water data reveals that the temperature difference between the hot- and cold-side, ΔT = Th ? Tc  0, is almost zero for nanofluid whereas ΔT > 0 for water. When ΔT  0, the contribution of Fourier effect to the overall heating is approximately zero hence enhancing the module cooling capacity. Experimental evidence further shows that temperature gradient across the thermal paste that bonds the chip and heat exchanger is much lower for the nanofluid than for deionized water. Low temperature gradient results in low resistance to the flow of heat across the thermal paste. The average thermal contact resistance, R = ΔT/Q, is 0.18 and 0.12 °C/W, respectively for the deionized water and nanofluid. For the range of optimum current, 1.2 ? current ? 4.1 A, considered in this study, the COP ranges between 1.96 and 0.68.  相似文献   

7.
《Applied Thermal Engineering》2007,27(14-15):2426-2434
This paper presents measurements and predictions of a heat pipe-equipped heat exchanger with two filling ratios of R134a, 19% and 59%. The length of the heat pipe, or rather thermosyphon, is long (1.5 m) as compared to its diameter (16 mm). The airflow rate varied from 0.4 to 2.0 kg/s. The temperatures at the evaporator side of the heat pipe varied from 40 to 70 °C and at the condenser part from 20 to 50 °C. The measured performance of the heat pipe has been compared with predictions of two pool boiling models and two filmwise condensation models. A good agreement is found. This study demonstrates that a heat pipe equipped heat exchanger is a good alternative for air–air exchangers in process conditions when air–water cooling is impossible, typically in warmer countries.  相似文献   

8.
The two-phase heat transfer coefficient and pressure drop of pure HFC-134a condensing inside a smooth helically coiled concentric tube-in-tube heat exchanger are experimentally investigated. The test section is a 5.786 m long helically coiled double tube with refrigerant flowing in the inner tube and cooling water flowing in the annulus. The inner tube is made from smooth copper tubing of 9.52 mm outer diameter and 8.3 mm inner diameter. The outer tube is made from smooth copper tubing of 23.2 mm outer diameter and 21.2 mm inner diameter. The heat exchanger is fabricated by bending a straight copper double-concentric tube into a helical coil of six turns. The diameter of coil is 305 mm. The pitch of coil is 35 mm. The test runs are done at average saturation condensing temperatures ranging between 40 and 50 °C. The mass fluxes are between 400 and 800 kg m−2 s−1 and the heat fluxes are between 5 and 10 kW m−2. The pressure drop across the test section is directly measured by a differential pressure transducer. The quality of the refrigerant in the test section is calculated using the temperature and pressure obtained from the experiment. The average heat transfer coefficient of the refrigerant is determined by applying an energy balance based on the energy rejected from the test section. The effects of heat flux, mass flux and, condensation temperature on the heat transfer coefficients and pressure drop are also discussed. It is found that the percentage increase of the average heat transfer coefficient and the pressure drop of the helically coiled concentric tube-in-tube heat exchanger, compared with that of the straight tube-in-tube heat exchanger, are in the range of 33–53% and 29–46%, respectively. New correlations for the condensation heat transfer coefficient and pressure drop are proposed for practical applications.  相似文献   

9.
Under the condition that the transient oxidation heat extraction process of coal mine ventilation air methane (VAM) is equivalent to a series of steady state process, the steady state heat extraction experiment platform is built. The influence of the honeycomb ceramic packed in heat extraction zone and its two-side space on heat extraction rate and heat transfer modes is investigated. The experimental results show that the honeycomb ceramic packed in heat extraction zone two-side space can always strengthen heat extract ion of heat exchanger by increasing gas physical flow velocity in bed and radiation heat exchanging area and disturbing heat exchanger leeward side flow field. The contradictory dual characteristic of the influence of the honeycomb ceramic packed in heat extraction zone on heat exchanger heat extraction rate determines that the honeycomb ceramic has no great influence on heat extraction rate and doesn't always strengthen heat exchanger heat extraction. Contribution of heat transfer modes on packed bed embedded heat exchanger heat extraction is investigated using the method of coating heat exchanger outer surface silver; the experimental result shows that 55% contribution of packed bed embedded heat exchanger heat extraction rate is from radiation when gas mass flow rate is 0.15 kg·s 1·m 2 and its temperature is 1113 k; with the gas temperature being increased further, radiation will become the main way of packed bed embedded heat exchanger heat extraction.  相似文献   

10.
This paper investigates the heat transfer rate of the combined cooling-and-heating heat exchanger by using computational fluid dynamics (CFD) method. Several factors, such as additional baffles and heat transfer areas, are also discussed in order to improve the efficiency of heat exchanger in the vacuum freeze-drying system. The simulated result indicated that, for addition electrical heating tube, the heat transfer rate of the heat exchanger increased with the increasing length of the electrical heating tube. The increasing rates of secondary and primary drying stages were 2.774 and 2.986 W/mm, respectively. For additional vertical baffle, the variation of the heat transfer rate with respect to vertical baffle length was in the U-shape format. The minimum heat transfer rates of secondary drying, primary drying and freezing stages were 716.79 W and − 195.17 W and − 670.71 W, respectively. For additional W-shape vertical baffles, the heat transfer rate of this heat exchanger was maximum among these four designs. For the three stages of heat exchangers with these four designs, the shell side Nusselt number had the inverse linear relationship with the Reynolds number.  相似文献   

11.
A micro-scale cross-flow heat exchanger is constructed from a hollow nickel micro-lattice structure, which is fabricated by conformally electroplating nickel onto a sacrificial polymer micro-lattice formed from self-propagating photopolymer waveguides. The periodic unit cell of the hollow nickel micro-lattice structure tested here includes lattice members with a diameter <1 mm and a nominal pore size <9 mm. The heat transfer performance of the micro-lattice-based heat exchanger is analyzed in terms of thermal conductance per unit volume, which is equal to the value of overall heat transfer coefficient multiplied by surface area to volume ratio. Calculated values range from 0.84 to 1.58 W/cm3K for Reynolds number ranges of between 3400 ± 200 and 6500 ± 500 for hot water flow inside the hollow lattice members and 85 ± 6 and 240 ± 20 for cold water flow around the lattice members. Based on a developed correlation, the experimental heat transfer data is used to predict the thermal performance of larger and smaller micro-lattice-based heat exchangers, as well as various micro-lattice feature dimensions that are tunable with the fabrication process (node-to-node spacing, inner diameter, etc.). The micro-lattice heat exchanger was tested under quasi-static compression and the results illustrate the multifunctional capability for load bearing and energy absorption applications. This work demonstrates a multifunctional heat exchanger with a fully-scalable fabrication process which is useful for size and weight constrained heat transfer applications, including those in the automotive and aerospace industries.  相似文献   

12.
《Applied Thermal Engineering》2007,27(13):2195-2199
In this paper, a solid adsorption cooling system with silica gel as the adsorbent and water as the adsorbate was experimentally studied. To reduce the manufacturing costs and simplify the construction of the adsorption chiller, a vacuum tank was designed to contain the adsorption bed and evaporator/condenser. Flat-tube type heat exchangers were used for adsorption beds in order to increase the heat transfer area and improve the heat transfer ability between the adsorbent and heat exchanger fins. Under the standard test conditions of 80 °C hot water, 30 °C cooling water, and 14 °C chilled water inlet temperatures, a cooling power of 4.3 kW and a coefficient of performance (COP) for cooling of 0.45 can be achieved. It has provided a specific cooling power (SCP) of about 176 W/(kg adsorbent). With lower hot water flow rates, a higher COP of 0.53 can be achieved.  相似文献   

13.
A mathematical model of heat and mass transfer in activated carbon (AC) tank for hydrogen storage is proposed based on a set of partial differential equations (PDEs) controlling the balances or conservations of mass, momentum and energy in the tank. These PDEs are numerically solved by means of the finite element method using Comsol MultiphysicsTM. The objective of this paper is to establish a correct set of PDEs describing the physical system and appropriate parameters for simulating the hydrogen storage process. In this paper, we establish an axisymmetric model of hydrogen storage by adsorption on activated carbon, considering heat and mass transfer of hydrogen in storage tank during the charging process at room temperature (295 K) and the pressure of 10 MPa. To simulate the hydrogen storage process accurately, the heat capacity of adsorbed phase, the contact thermal resistance between the AC bed and the steel wall and the inertial resistance of high speed charging hydrogen gas are all taken into account in the model. The governing equations describing the hydrogen storage process by adsorption are solved to obtain the pressure changes, temperature distributions and adsorption dynamics in the storage tank. The pressure reaches a maximum value of 10 MPa at about 240 s. A small downward trend appears in the later stage of the charging process, which lasts 700 s. The temperature distribution is highest in the center of the tank. The temperature history exhibits a rapid increase initially, followed by a steady decline. A modified Dubinin–Astakhov (D–A) model is used to represent the hydrogen adsorption isotherms. The highest hydrogen uptake is 10 mol H2/kg AC, at the entrance of hydrogen storage tank, where the temperature is lowest. The adsorption distribution at a given time is mainly determined by the temperature distribution, because the pressure is almost uniform in the tank. The adsorption history, however, is dominated by the pressure history because the pressure change is much larger than temperature change during the charging process of hydrogen storage.  相似文献   

14.
Experimental study on a cryogenic loop heat pipe with high heat capacity   总被引:1,自引:0,他引:1  
Cryogenic loop heat pipes (CLHPs) are efficient heat transfer devices based on two-phase flow. Loop heat pipes for room temperature applications have achieved satisfactory thermal control functions with the benefits of no mechanical moving part, vibration isolation, thermal insulation, long heat transport distance and so on. While there exist many problems for low temperature applications of loop heat pipes, such as limited heat transport capacity, which could not meet the increasing requirement of instrument heat dissipation. This paper presents an advanced CLHP operating at liquid-nitrogen temperature range. An improved condenser structure is introduced to the CLHP, which greatly reduces the flow resistance and increases the cooling capability of the condenser. Many experiments have been carried out on the CLHP prototype for performance test, and one set of the experimental results with a 3.2 MPa fill pressure at room temperature is presented in this paper. It is shown that the advanced CLHP prototype can be operated reliably with a high heat transfer capacity up to 41 W and a limited temperature difference of 6 K across a 0.48 m transport distance.  相似文献   

15.
A direct-contact compact heat exchanger to enhance cooling of hot water, has been manufactured and tested experimentally. Hereby hot water is dispersed into a cooler liquid gallium bath in the form of small water bubbles emanating from 48 holes with 3 mm diameter each, drilled on four horizontal bubbles distribution tubes. Heat transfer limitations posed by gallium's low specific heat have been circumvented by imbedding cooling water tubes within the gallium. Thereby it was possible to maintain gallium at almost 30 °C during water bubbling; slightly above gallium's freezing point. Temperature reduction by about 23 °C was possible for hot water flow with initial temperature of about 60 °C and flow rate of 11.3 g/s when bubbled through such gallium bath that has temperature of about 30 °C and thickness of about only 18 mm. To realize such temperature drop for water using equivalent shell-tube heat exchangers of conventional kinds with 3 mm diameter tubing, a tube length in the range of 70 to 80 cm would be required. Theoretical considerations and empirical correlations dedicated to solid sphere calculations have been used to predict motion and heat transfer events for water bubbles moving through isothermal gallium bath. The computations were extended to include the experimental temperature conditions tested. Computations agree very well with experimental results.  相似文献   

16.
This paper presents the cooling performance of a water-to-refrigerant type ground heat source heat pump system (GSHP) installed in a school building in Korea. The evaluation of the cooling performance has been conducted under the actual operation of GSHP system in the summer of year 2007. Ten heat pump units with the capacity of 10 HP each were installed in the building. Also, a closed vertical typed-ground heat exchanger with 24 boreholes of 175 m in depth was constructed for the GSHP system. To analyze the cooling performance of the GSHP system, we monitored various operating conditions, including the outdoor temperature, the ground temperature, and the water temperature of inlet and outlet of the ground heat exchanger. Simultaneously, the cooling capacity and the input power were evaluated to determine the cooling performance of the GSHP system. The average cooling coefficient of performance (COP) and overall COP of the GSHP system were found to be ~8.3 and ~5.9 at 65% partial load condition, respectively. While the air source heat pump (ASHP) system, which has the same capacity with the GSHP system, was found to have the average COP of ~3.9 and overall COP of ~3.4, implying that the GSHP system is more efficient than the ASHP system due to its lower temperature of condenser.  相似文献   

17.
《Applied Thermal Engineering》2007,27(5-6):877-885
A theoretical model that predicts the thermal and fluidic characteristics of a micro cross-flow heat exchanger is developed in this study. The theoretical model is validated by comparing the theoretical solutions with the experimental data from the relative literature. This model describes the interactive effect between the effectiveness and pressure drop in the micro heat exchanger. The analytical results show that the average temperature of the hot and cold side flow significantly affects the heat transfer rate and the pressure drop at the same effectiveness. Different effectiveness has a great influence upon the heat transfer rate and pressure drop. When the micro heat exchanger material is changed from silicon to copper, the thermal conductivity changes from 148 to 400 W/m K. The heat exchanger efficiency is also similar. Therefore, the (1 1 0) orientation silicon based micro heat exchanger made using the MEMS fabrication process is feasible and efficient. Furthermore, the dimensions effect has a great influence upon the relationship between the heat transfer rate and pressure drop. Therefore, the methodology presented in this paper can be used to design a micro cross-flow heat exchanger.  相似文献   

18.
A loop heat pipe (LHP) with a circular flat evaporator was designed for cooling electronic devices. The flat evaporator with an outside diameter of 41 mm and a thickness of 15 mm was developed with a copper powder wick. The developed evaporator was examined to improve insufficient subcooling of liquid in a compensation chamber, which decreases an operating limitation of the LHP. Many different orientations of the elevation and direction of the evaporator were also considered during all of the experiments for this system. The active heating area was 3 cm × 3 cm, and water was used in the tests. This LHP generated a heat load in excess of 140 W with a total thermal resistance of 0.39 °C/W.  相似文献   

19.
《Exergy》2002,2(2):113-118
In this study, an exergoeconomic analysis of condenser type parallel flow heat exchangers is presented. Exergy losses of the heat exchanger and investment and operation expenses related to this are determined with functions of steam mass flow rate and water exit temperature at constant values of thermal power of the heat exchanger at 75240 W, cold water mass flow rate and temperature. The inlet temperature of water is 18 °C and exit temperatures of water are varied from 25 °C to 36 °C. The values of temperature and pressure of saturated steam in the condenser are given to be Tcon=47 ° C and Pcon=10.53 kPa. Constant environment conditions are assumed. Annual operation hour and unit price of electrical energy are taken into account for determination of the annual operation expenses. Investment expenses are obtained according to the variation of heat capacity rate and logarithmic mean temperature difference and also heat exchanger dimension determined for each situation. The present analysis is hoped to be useful in determining the effective parameters for the most appropriate exergy losses together with operating conditions and in finding the optimum working points for the condenser type heat exchangers.  相似文献   

20.
The application of numerical simulations using the computational fluid dynamics (CFD) analysis when mapping processes in the course of which the heat transmission occurs has become an essential part of the heat transfer systems. The present contribution deals with the possibility to use the waste heat of the flue gas produced by small microturbines. The waste heat is mapped by means of both the numerical simulations applying the FLUENT software and the practical experiment. Utilizing a part of the waste heat for water heating and decreasing the outlet temperature of the flue gas into atmosphere when applying in co-generating units represents one of the partial benefits. The present paper brings information concerning the newly designed type of heat exchanger including the results of its numerical analysis.The analysed heat exchanger designed in the system with microturbine (MT) C30 reached generally the efficiency of 75%. Both the results of simulations and the carried out practical experiment confirmed the temperature of the flue gas to be sufficient behind the exchanger to prevent the condensation of water from the flue gas. On the contrary, except for heating water the exchanger under consideration offers – thanks to its design – also other possibilities to use of the flue gas. The practical experiment confirmed the results of the CFD prediction with rather small differences as the temperature of water obtained from the exchanger was 359 K and the designed shape of the exchanger did not result in substantial pressure losses in flue gas approximately 50 Pa. The mean logarithmic temperature difference of the mapped and verified exchanger was ~203 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号