首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
对丙酮丁醇梭菌在以葡萄糖、木糖、蔗糖、混合糖、玉米芯酸解糖液分别作C源的P2培养基中的产丁醇状况进行研究。结果表明:不同C源对丙酮丁醇梭菌发酵产丁醇有显著的影响;葡萄糖为底物时,丁醇产量最高达到13.50 g/L,总溶剂为19.66 g/L;蔗糖为底物时,丁醇所占比例都在70%以上,丁醇产量可达12 g/L;木糖、混合糖为底物时,丁醇产量在10 g/L左右;只有丙酮丁醇梭菌I4-28能利用玉米芯酸解糖液发酵产丁醇,丁醇产量为7 g/L。  相似文献   

2.
有机酸对木醋杆菌合成细菌纤维素的影响规律   总被引:6,自引:1,他引:6  
木醋杆菌(Acetobacter xylinum)在静止培养条件下,在基本培养基中添加醋酸、柠檬酸和乳酸,可以提高细菌纤维素的产量。但各种增效因子的添加量均有一最适宜的浓度。其中,添加0.1%的醋酸,细菌纤维素的产量为2.75 g/L;加入0.2%的柠檬酸时细菌纤维素产量为2.15 g/L;加入0.1%的乳酸,细菌纤维素的产量为2.76 g/L。  相似文献   

3.
高产量、高分子量透明质酸发酵条件优化   总被引:8,自引:0,他引:8  
研究了搅拌转速、初糖浓度及通气量对兽疫链球菌Streptococcus zooepidemicus WSH24发酵生产透明质酸的影响. 研究结果表明,搅拌转速对透明质酸产量及分子量影响很大,搅拌转速为200 r/min时透明质酸产量达到5.3 g/L,平均分子量达到1.88×106 Da,产率系数为0.13 g/g;初始葡萄糖浓度为65.8 g/L时有利于透明质酸的生产,产量达5.9 g/L,平均分子量达1.90×106 Da,产率系数为0.17 g/g;通气量对透明质酸的发酵也有较大影响,通气量为1.2 L/(min·L)时透明质酸的产量及分子量均高于0.5 L/(min·L)时的发酵结果.  相似文献   

4.
分别以木薯酶解液和糖蜜处理液作为发酵碳源,在机械搅拌式发酵罐中生产细菌纤维素(BC).通过考察纤维素产量、活菌增殖、耗糖量以及溶氧率等参数研究添加0~0.8% (w/V)琼脂对BC产量的影响.结果表明,未添加琼脂时,木薯酶解液的BC产量为6.8 g/L,发酵效果优于糖蜜的4.8 g/L.添加琼脂可以显著提高BC产量.木薯发酵中,添加0.2%琼脂得到的最大BC产量为8.1 g/L,比未添加的增加了l9%;糖蜜发酵中,添加0.6%琼脂的最大产量为7.4 g/L,比未添加的增加了54%.  相似文献   

5.
为考察葡萄糖和铜离子盐协同补料发酵对球头三型孢菌产赤藓糖醇的影响,在5L发酵罐中先采用不同浓度的葡萄糖进行分批发酵,然后采用优化的葡萄糖浓度并添加CuSO4·5H2O进行发酵研究。结果表明,初始葡萄糖浓度为300g/L的赤藓糖醇产量最大为44.52g/L,其体积生产速率为0.371g/(L·h)、转化率为0.167g/g。在此浓度葡萄糖的基础上添加30mg/L的CuSO4·5H2O后,赤藓糖醇产量达到49.62g/L,提高了11.5%。进一步控制总糖浓度为300g/L,且初始浓度为200g/L,分别进行单独补糖和协同补糖与铜离子的补料发酵,结果赤藓糖醇产量分别为47.25g/L和55.31g/L,比初始300g/L的葡萄糖分批发酵分别提高了6.1%和24.2%。特别地,协同补糖与CuSO4·5H2O后,赤藓糖还原酶(erythrose reductase,ER)的活性在84h达到最大,为0.152U/mg,比单独补糖时提高了18.8%;通过铜离子盐和葡萄糖的协同补料发酵可显著提高赤藓糖醇的产量,最终使赤藓糖醇产率达到0.461g/(L·h)。  相似文献   

6.
以纤维素酶水解蒸汽爆破麦秆的过程为研究对象,考察了底物浓度、纤维素酶用量、β-葡萄糖苷酶装载量以及化学激活剂对麦秆水解的影响。结果表明,高底物浓度下的最佳酶解工艺条件为底物(麦秆)浓度20%,酶装载量(U/g纤维素):滤纸酶活45、β-葡萄糖苷酶25、木聚糖酶800,0.1 mmol/L Mg2+、0.1 mmol/L Co2+、10 mmol/L Fe3+,1 g/L PEG2000、1 g/L Tween80和1 g/L山梨醇,搅拌速度120~150 r/min,分批补料,p H4.8,50℃,水解时间144 h。在此条件下,还原糖浓度达115.43 g/L,葡萄糖浓度达88.39 g/L,转化率也分别达到78.04%和88.73%。  相似文献   

7.
惰性吸附载体固态发酵细菌纤维素的研究   总被引:1,自引:0,他引:1  
惰性载体吸附固态发酵是一种新型的固态发酵方式。以聚氨酯塑料泡沫为吸附载体,对木醋杆菌(Acetobacter xylinum)CGMCC No.1.1812吸附载体固态发酵过程中影响纤维素产量的因素及发酵过程进行了初步研究。结果表明,在固液比为1∶16,载体堆料高度为3 cm,初始葡萄糖质量浓度为20 g/L时,72 h发酵,细菌纤维素产量可达到4.86 g/L,整个发酵周期的容积生产率可达到1.62 g/(L.d)。与常规液态静置发酵相比,发酵产量同期提高了5.65倍,一个发酵周期的容积生产率提高了3.16倍。  相似文献   

8.
稻草秸秆3种预处理方法的比较   总被引:2,自引:2,他引:0  
底物w(纤维素)和w(半纤维素)是木质纤维素转化为乙醇、乳酸和其他化学品最为重要的因素。为了提高底物w(纤维素)、w(半纤维素)和糖化得率,该文采用稀硫酸、氢氧化钠和氢氧化钠联合过氧乙酸等3种化学方法对稻草秸秆进行了预处理。结果表明,用ρ(NaOH)=20 g/L的碱液于85℃与ρ(过氧乙酸)=60 g/L酸液于75℃联合处理秸秆时,秸秆w(纤维素)从41.5%上升到81.5%,w(半纤维素)下降为13.7%,纤维素酶酶解48 h葡萄糖质量浓度达37.7 g/L,木糖质量浓度为12.8 g/L;用ρ(NaOH)=20 g/L碱液于121℃处理秸秆时,秸秆w(纤维素)为66.3%,w(半纤维素)为20.2%,酶解60 h后葡萄糖质量浓度为33.5 g/L,72 h木糖质量浓度为15.1 g/L。  相似文献   

9.
比较了休哈塔假丝酵母NLP21、树干毕赤酵母NLP22、NLP23和NLP31,在30 g/L的木糖和混合糖(葡萄糖15 g/L+木糖15 g/L)发酵培养基上以及在培养基中氮源浓度降低到原来1/2和1/10时的发酵性能。结果表明,在30 g/L木糖发酵培养基上,NLP23和NLP31产乙醇质量浓度最高,分别为(11.14±0.13)和(11.15±0.08) g/L。在15 g/L葡萄糖+15 g/L木糖混合糖发酵培养基上,NLP31产乙醇质量浓度最高,为(10.91±0.12) g/L。当发酵培养基中氮源浓度降低到原来的1/2时,NLP23和NLP31产乙醇能力相当,但后者产木糖醇的量增大;当氮源质量浓度降低到原来的1/10时,NLP23和NLP31产乙醇能力随着发酵轮数的增加,逐渐下降,氮源浓度低,降低了乙醇的产量。  相似文献   

10.
纤维素水解液中通常含有纤维二糖。本文考察了Actinobacillus succinogenes NJ113利用纤维二糖厌氧发酵生产丁二酸的能力,并利用蔗渣纤维素制备纤维二糖作为碳源用于厌氧发酵生产丁二酸。3 L发酵罐厌氧发酵结果显示:以35 g/L纤维二糖作为碳源发酵制备丁二酸,其产量为23.51 g/L,产率达到67.17%;用含有18 g/L纤维二糖和17 g/L其它糖类的蔗渣纤维素水解液作为碳源发酵制备丁二酸,丁二酸的产量和产率分别为20.00 g/L和64.73%。因此,Actinobacillus succinogenes NJ113具有较强的利用纤维二糖生产丁二酸的能力,而且利用废弃的纤维素制备纤维二糖作为碳源高效、经济地发酵制备丁二酸具有可行性。  相似文献   

11.
The effects of three main sugars in cane molasses were investigated systematically to prepare a cost-effective medium for butyric acid bioproduction. Additionally, 30 g/L corn steep liquor was screened out as the suitable nitrogen source. In the batch fermentation of free cells, when 60 g/L glucose was the only carbon source, 21.28 g/L butyric acid was achieved after 30 h cultivation. Similar product concentration, productivity and yield were obtained when 60 g/L fructose was applied. The utilization of sucrose would bring about lower productivity (0.29 g/L·h) and product concentration (18.15 g/L), but the yield of butyric acid/sucrose (0.34 g/g) is almost the same as that from glucose or fructose (0.35 g/g). Finally, the sugar mixture (15 g/L glucose, 20 g/L fructose and 35 g/L sucrose) was employed to produce butyric acid in a fibrous-bed bioreactor (FBB), and 40.11 g/L butyric acid was produced with one simple fed-batch strategy.  相似文献   

12.
朱婧  吴昊  任心怡  张敏  马江锋  姜岷 《化工进展》2015,34(12):4333-4337
为了降低生物法制备甘露醇的成本,以假肠膜明串珠菌Leuconostoc pseudomesenteroides G123为研究对象,对培养基中的氮源、葡萄糖与果糖比例和pH调控过程进行了优化,提高了果糖转化率和甘露醇产量。5L发酵罐中结果显示:采用2g/L的酵母粉作为单一氮源,葡萄糖和果糖的比例为0.35:1,初始pH值7.5,发酵过程中保持pH值不低于4.5,甘露醇产量可达57.24g/L,甘露醇对果糖的转化率为83.2%。该过程副产D-乳酸20.32g/L,其光学纯度达99.9%,具有回收价值,甘露醇与D-乳酸对糖总转化率为89.38%,有助于降低生物法制备甘露醇的成本。  相似文献   

13.
金属离子助催化稀酸水解纤维素工艺的研究   总被引:1,自引:0,他引:1  
以小麦秸秆为原料,采用正交试验考察了硫酸浓度、Fe2+浓度、反应温度和反应时间等因素对稀酸水解纤维素的还原糖得率的影响,得到了优化的纤维素水解反应工艺组合:反应温度180℃,Fe2+浓度0.0375mol/L,硫酸质量分数1%,反应时间90min。研究了Fe2+、Ni2+、Na+、Mg2+四种金属离子对稀酸水解纤维素制备还原糖的影响,结果表明,金属离子能明显提高稀酸水解纤维素的转化率和还原糖得率,其助催化作用的大小依次为:Fe2+Na+Ni2+Mg2+,Fe2+对稀酸水解小麦秸秆制备还原糖的催化效果最佳,还原糖得率最高可达73.05%,纤维素转化率达到85.79%。  相似文献   

14.
To meet their carbohydrate requirements, adult parasitoids exploit a broad range of sugar resources, including floral and extrafloral nectar and honeydew. Although honeydew might be the predominant sugar source, especially in agricultural systems, it often is nutritionally inferior to sugar sources like nectar. Given its broad availability, it may be expected that sugar-feeding insects have evolved specialized adaptations to deal with this typically inferior sugar source. This would apply especially to organisms that have a close association with honeydew producers. Here, we hypothesized that parasitoids of honeydew-producing insects should show a pronounced response to sugars, such as fructose, sucrose, melezitose, and trehalose, and to a lesser extent glucose. To test this hypothesis, we investigated sugar consumption, feeding behavior and survival of the aphid parasitoid Aphidius ervi on several sugars (equiweight solutions). Our results show that A. ervi adults consumed typical honeydew sugars (sucrose, fructose, trehalose, and melezitose) the most, while consuming considerably less glucose or melibiose. Rhamnose, which does not occur in aphid honeydew, was not, or was only marginally, consumed. When different sugars were provided at the same time, A. ervi adults preferred sucrose or fructose over glucose or melezitose. Furthermore, pre-exposure to sucrose or fructose significantly reduced subsequent intake of glucose, suggesting an acquired distaste for glucose after being previously exposed to highly preferred sugars such as sucrose and fructose. Altogether, this study shows that A. ervi adults prefer sugars (fructose, melezitose, trehalose, and sucrose) that are overrepresented in aphid honeydew and show a lower preference to one (glucose) that is underrepresented in honeydew.  相似文献   

15.
介绍了以不同底物的丁醇发酵结果,阐述了在以55g/L葡萄糖与果糖(1∶4)混合糖模拟菊芋物料为底物的丁醇发酵过程中存在果糖利用及丁醇产量较低等问题,研究了基于葡萄糖与果糖不同混合比例(1∶2、2∶3、3∶2及3∶1)的丁醇发酵性能。研究结果说明了随着混合比例提高,发酵时间由76h缩短至48h,菌体最大生物量OD620由2.1提高至4.3,而当葡萄糖与果糖混合比例为1∶2时,发酵过程中菌体细胞对果糖代谢能力最佳,且终点残糖浓度仅为2.1g/L,果糖利用效率达到95.03%,丁醇及总溶剂产量分别达到9.7g/L与16.0g/L。  相似文献   

16.
任云利  汪同嘉  王键吉 《化工学报》2011,62(9):2629-2634
引言化石能源面临枯竭,石油价格不断攀升,摆脱对化石能源的依赖是国内外亟待解决的重大问题。氢气因热值高、可再生且燃烧后无污染,成为21世纪最理想的能源。在众多制取氢气的方法中,厌氧发酵制氢反应条件温和,设备简单,而且可利用的原料来源广泛,从而引起了广泛的关注。  相似文献   

17.
淀粉和纤维素能够被四氯化锡催化转化为乳酸甲酯和乳酸,使用离子液体是实现多糖转化的关键。在实验中考察了催化剂、离子液体、反应时间和反应温度对于总乳酸收率的影响。实验结果显示,在1,3-二甲基咪唑硫酸甲酯盐中的淀粉在140℃条件下反应2 h可获得54%总乳酸收率,纤维素的收率为15.1%。果糖在同样的反应条件下收率为95%,葡萄糖为64%,这意味着反应机理可能为纤维素和淀粉首先降解为葡萄糖,然后异构为果糖,最终果糖分解为乳酸。  相似文献   

18.
Extractive-free pine wood was processed into vanillin (up to 18 wt.% of the initial lignin) and cellulose (typically 84–93% of the initial amount in the wood) by one-step catalytic oxidation followed by enzymatic hydrolysis of the resulting cellulose into glucose (reducing sugar yield up to 70% based on the post-oxidation cellulose). Correlation between the cellulose conversion in hydrolysis and the lignin content in the post-oxidation lignocellulosic material was established, which follows the general trend for the products of various delignification methods. The obtained results demonstrate the practical possibility of efficient two-step processing of wood into vanillin and glucose.  相似文献   

19.
Cellulose, one of the most abundant and useful natural resources from products of forests, has become increasingly important because of its conversion to bio-ethanol. Yet, the low yield of the conversion is the key problem that should be solved. Microcrystalline cellulose was chemically modified with 2,4-dianilino-6-chloro-1,3,5-triazine to increase the yield of hydrolysis of cellulose for high glucose generation. The modifier, 2,4-dianilino-6-chloro-1,3,5-triazine, was synthesized from 2,4,6-trichlorine-1,3,5-triazine and aniline, and the chemical structure of the modifier was determined by Fourier transform-infrared, nuclear magnetic resonance and mass spectrometry techniques. The structure of the modified microcrystalline cellulose was characterized by Fourier transform-infrared spectrometry and wide-angle X-ray diffraction techniques. The hydrolysis of the modified microcrystalline cellulose had been studied and the yield of the reducing sugar reached the highest when the relative molar percentage of 2,4-dianilino-6-chloro-1,3,5-triazine to the cellulose (based on the remained glucose unit) was about 30 %. The change of the crystalline structure of cellulose by chemical modification, which was suggested by wide-angle X-ray diffraction spectra, was propitious to the hydrolysis of cellulose. Furthermore, the yield of hydrolysis varied with the loading of the modifier which was due to the change of the crystalline structure of the modified cellulose. It might be a probable mechanism of yield improvement via modification that was verified by the calculated result of crystalline index and crystallite size.  相似文献   

20.
天然紫背天葵红色素的初步研究   总被引:11,自引:0,他引:11  
从紫背天葵中提取天然红色素的工艺条件是 :以体积分数是 30 %的乙醇 -水溶液作提取剂 ,温度为 5 0℃ ,时间为 3h ,原料与提取剂配比为 1g∶7mL。对该色素稳定性研究的结果表明 ,紫背天葵红色素在pH≤ 4的条件下对热的稳定性好 ,在此条件下加入果糖、葡萄糖、蔗糖、淀粉或Na+ 、K+ 、Mg2 + 、Zn2 + 、Ca2 + 等金属离子时色素颜色不变 ,但Fe3 + 的存在会使该色素颜色改变。pH≥ 5时 ,色素颜色发生变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号