首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
张芳  王艺慈  董方  张岩 《特殊钢》2010,31(4):28-30
用B2O3作为含氟渣中CaF2的替代熔剂,在保证两结晶器保护渣具有相近粘度和熔化温度的基础上,研究了成分为(%):31.1~35.5CaO、33.9~38.5SiO2、12Al2O3、3MgO、5Na2O、6~15CaF2的含氟结晶器保护渣和(%):33.5~35.5CaO、36.5~39.5SiO2、4Al2O3、5MgO、8~15Na2O、2Li2O、2~6B2O3的无氟结晶器保护渣的结晶温度、结晶能力以及对结晶器控制传热的影响。结果表明,8Na2O-6B2O3无氟渣与5Na2O-15CaF2的含氟渣有相近的粘度和熔化温度,并对结晶器控制传热有相似的作用。   相似文献   

2.
BaO对连铸保护渣熔化行为和结晶矿相的影响   总被引:3,自引:1,他引:2  
实验研究和分析了BaO(2%~8%)对连铸结晶器保护渣(%:3~5MgO、1~2Al2O3、8Na2O、3~4B2O3、2Li2O、3~4C)熔化和结晶温度的影响以及无氟渣的结晶矿相。结果表明,随BaO含量由2%增加至8%,保护渣的熔化温度由1053℃降至1011℃,结晶温度降低较少,从954℃降至948℃;无氟渣的结晶矿相为黄长石,是铝黄长石(Ca2Al2SiO7)、镁黄长石(Ca2MgSi2O7)和钠黄长石(NaCaAlSi2O7)的固溶体,可通过调整渣膜中黄长石的析晶率,控制结晶器与坯壳间的传热。  相似文献   

3.
研究了氟含量1.9%的保护渣系(%:27~30CaO、30~33SiO2、2~3Al2O3、2~3MgO、10~12R2O、1~2Fe2O3、4~5C粉、2Li2O、4CaF2、0~8B2O3)的理化性能。结果表明:随着渣中B2O3含量的增加,保护渣熔点、析晶温度、粘度均降低,但B2O3含量超过6%以后,对保护渣牯度几乎没有影响;B2O3含量为2%~4%时,表面张力较低,有利于结晶器内钢液中夹杂物的上浮排除,得到洁净铸坯。  相似文献   

4.
使用偏光显微镜,系统对比分析了邯郸钢厂超低碳钢SPHC(0.020%~0.055%C,70 mm板坯保护渣/%:33.14SiO2,3.86Al2O3,3.88MgO,31.52CaO,8.27K2O+Na2O,7.55F-1,3.93C)、包晶钢SS400(0.18%~0.22%C,70 mm板坯保护渣/%:29.62SiO2,4.63Al2O3,2.05MgO,35.86CaO,10.43 K2O+Na2O,7.55F-1,3.93C)和Ti微合金钢Q345B(0.15%~0.19C,0.04%~0.05%Ti,260 mm板坯保护渣/%:31.10SiO2,5.21Al2O3,5.07MgO,35.46CaO,6.22K2O+Na2O,6.96F-1,6.96C)对应的渣膜的矿相组成、结晶率和显微结构。结果表明,3种渣膜从铸坯至结晶器侧均呈现"结晶层-玻璃层"交替结构。SPHC钢渣膜有90%~95%的玻璃相,结晶相仅出现少量枪晶石,低结晶率有利于其润滑铸坯;SS400钢渣膜结晶率为55%~60%,析出较多的枪晶石和部分黄长石,有利于控制铸坯传热;Ti微合金钢Q345B渣膜结晶率略高于SS400钢,析出的黄长石、枪晶石和硅灰石能同时满足连铸对其润滑和控制传热的需求,可得到良好的铸坯质量。  相似文献   

5.
选取常规用保护渣和高拉速用优化保护渣研究了其高温结晶性能与玻璃质渣膜回温结晶性能.研究表明,优化后的高碱度保护渣具有较高的结晶温度和较低的脱玻化温度,同等实验条件下析晶能力更强,结晶相主要为枪晶石(3CaO.2SiO2.CaF2),并且晶粒粗大,凝固组织中有大量空隙,渣膜表面粗糙度大,有利于增加渣膜热阻,更适合于高拉速生产.  相似文献   

6.
潘伟杰  李民  朱礼龙  何生平 《钢铁》2022,57(1):93-101
 在包晶钢连铸过程中,裂纹类缺陷频繁出现。生产实践表明,采用结晶性能较强的保护渣可以有效减少纵裂纹的发生,但会恶化保护渣的润滑功能。近年来,超高碱度保护渣由于兼具开始结晶温度低、结晶速率快的特点,可以成功协调包晶钢连铸过程中润滑与传热的矛盾。但在超高碱度条件下,有关组分对保护渣结晶性能的影响研究不多,且相应的熔渣结构特征也鲜有报道。Na2O作为保护渣中一种常见的组元,对调节保护渣性能具有重要作用。论文采用半球点熔化温度测试仪、旋转黏度计以及高温原位结晶性能测试仪分析了超高碱度下(综合碱度R=1.75)Na2O对连铸保护渣熔化流动特性以及凝固结晶性能的影响规律和作用机制。研究结果发现,随着Na2O含量增加,保护渣的黏度(1 300 ℃)、熔化温度、转折温度和结晶温度都呈下降趋势,结晶速率呈现先减小后增大的趋势,当Na2O质量分数为6%时结晶速率最低。此外,研究还发现超高碱度保护渣中主要析出相为枪晶石(Ca4Si2F2O7),随着Na2O含量进一步增加,渣中出现新的结晶相CaF2和Na2CaSiO4F。  相似文献   

7.
 通过提高保护渣碱度以及渣中CaF2和Li2O含量,对中碳钢板坯用保护渣进行了优化,并采用优化的保护渣进行了提高拉速工业试验。结果表明:优化的保护渣具有较高结晶温度、较低的粘度和熔点;试验过程中,采用优化的保护渣液渣层厚度平均增加约2 mm,单耗增加0.03 kg/m2;采用优化的保护渣在1.5 m/min拉速下和采用原渣在1.3 m/min拉速下浇铸时,结晶器传热强度、传热的稳定性以及浇铸出的铸坯质量等项目水平相当。  相似文献   

8.
张宇斌  文光华  于雄  唐萍 《特殊钢》2013,34(6):22-25
浇铸过程无磁钢20Mn23A12V(/%:0.14~0.20C、≤0.50Si、21.5~25.0 Mn、1.50~2.50Al、0.04~0.10V)中的Al-[Al]易与保护渣中的SiO2-(SiO2)反应,导致结晶器保护渣变性,要求低碱度、低Al2O3的保护渣;并且该钢合金元素含量高,液相线温度低,要求低熔化温度的保护渣。设计了3种低碱度(0.55~0.61)、低熔化温度(904~1 015℃)的结晶器保护渣(/%:20.2~24.4CaO、35.3~40.0SiO2、2.2~4.1Al2O3、3.0~5.0B2O3),经25 t中间包,200 mm×1 260 mm板坯连铸试验。结果表明,5.0%B2O3,碱度0.50~0.60、熔化温度1 010℃、粘度0.215Pa·s的无磁钢20Mn23Al2V保护渣在0.60~0.65 m/min拉速下能较好的满足连铸工艺要求。   相似文献   

9.
以首钢京唐钢铁联合有限公司3号连铸机2.5m/min高拉速浇铸常规板坯试验为背景,建立流动、传热及摩擦力数值计算模型,并结合实际生产的监测数据,分析和讨论高拉速生产过程中相关工艺控制技术。结果表明,FC结晶器以及下倾角20°水口的使用有利于高拉速过程中的液面控制;通过改善二冷水量,并结合射钉试验,验证得出2.5m/min时的凝固终点仍位于铸机长度以内,而宽面铜板热面最高温度超过350℃;采用一种黏度较低、润滑性能较好的保护渣,并且拉速在2.0m/min以上时保护渣耗量均小于0.3kg/m2,但没有漏钢事故发生,建议开发非正弦振动模式。此外,高拉速条件下,铸坯表层夹杂物减少,冷轧板卷表面质量明显改善。  相似文献   

10.
从分析高拉速包晶钢板坯连铸结晶器内凝固传热行为特征入手,首先阐明拉速对结晶器内的界面热阻、凝固坯壳的温度与应力分布的影响规律,研究发现拉速超过1.6 m·min?1时,界面热阻明显增加,拉速由1.4 m·min?1提升至1.6 m·min?1和1.8m·min?1时,出结晶器坯壳厚度相应减少约10%,其发生漏钢的危险不断增加;在此基础上,阐述了结晶器的内腔结构、保护渣、振动与液面控制等控制结晶器内坯壳凝固均匀性的相关技术。要实现高速连铸,首要应考虑结晶器内腔结构的优化设计,使其能更好地迎合凝固坯壳的生长,研制适合包晶钢等凝固特点的专用连铸保护渣至关重要,铸坯鼓肚控制也是保障高拉速液面稳定的关键。   相似文献   

11.
Al2O3是一种两性氧化物,在高碱度条件下呈现酸性氧化物特征,而在低碱度条件下表现出碱性氧化物的行为,是冶金熔渣中常见的一种组元.以超高碱度保护渣(综合碱度R=1.75)为研究对象,分析了Al2O3对保护渣流动特性、熔化特性和凝固特性的影响规律.研究结果显示:渣中Al2O3质量分数每增加1%,熔化温度上升5℃左右,转折温度下降12℃左右,开始结晶温度平均下降11℃左右.平均结晶速率随渣中Al2O3质量分数的增加而减小.且随着Al2O3质量分数的增加,保护渣结晶矿相中晶体比例逐渐降低,但晶体保持枪晶石的种类不变.  相似文献   

12.
 针对特厚板连铸工艺的特点,分析了传统的中厚板连铸保护渣与特厚板连铸保护渣的作用特征差异。根据不同钢种在结晶器内的凝固特性,对新钢特厚板连铸保护渣进行了系列规划,分为高碳钢连铸保护渣、包晶钢连铸保护渣、中碳低合金钢连铸保护渣3大类。在此基础上,提出了保护渣熔化温度、黏度、转折温度、结晶比例的控制范围。生产实践表明,设计的保护渣浇铸过程结晶器内状况良好,渣面无结团、结块现象,液渣层厚度合适,保护渣消耗量正常,铸坯表面质量优良,连铸生产工艺顺行。  相似文献   

13.
韩秀丽  闫晓鹏  刘磊  赵凯  王程  杜亮 《特殊钢》2021,42(6):6-13
传统保护渣主要以CaO和SiO2为基料,辅以适量助熔剂如CaF2等构成;而无氟保护渣则是选用B2O3、TiO2等合适的助熔剂来替代CaF2达到绿色环保的目的。从保护渣的碱度、化学成分和结晶性能三方面,分别综述了传统含氟渣系CaO-SiO2-CaF2和新型无氟渣系CaO-SiO2-B2O3、CaO-SiO2-TiO2渣膜传热的影响规律,总结了近十年来冶金工作者对含氟和无氟保护渣渣膜传热的研究成果,得出无氟保护渣结晶矿相中硅硼酸钙和钙钛矿与传统保护渣中枪晶石具有相似的结晶行为,B2O3和TiO2的含量在4%~8%和3%~11%可有效控制传热,从而减少铸坯纵裂纹的发生。并提出了开发新型高效无氟保护渣的进一步研究方向,即无氟渣中氟化物替代物的迁移赋存规律对渣膜传热性能的影响机理。  相似文献   

14.
含铝TRIP钢钢液中Al易与结晶器保护渣中的SiO2发生氧化-还原反应,使其保护渣中Al2O3的质量分数由3%快速增加到30%左右,w(Al2O3)/w(SiO2)由0.10增加到1.44,导致黏度发生大的波动.研究了Al2O3含量和w(Al2O3)/w(SiO2)对含铝TRIP钢保护渣黏度的影响,建立了高Al2O3含量保护渣系黏度的计算模型.结果表明:随着Al2O3质量分数由3%增加到17%,综合碱度R<1的保护渣黏度先增大再减小,而R≥1的保护渣黏度变化较小;随着Al2O3质量分数由17%增加到30%,保护渣的黏度快速增大;随着w(Al2O3)/w(SiO2)的增大,Al-TRIP钢保护渣的黏度呈现先快速减小而后迅速增大的趋势.  相似文献   

15.
高钛焊丝钢连铸过程中结晶器内钢渣界面反应严重,首先对存在严重钢渣界面反应现象的A钢种进行了凝固特性分析。设计一种低反应性的高钛焊丝钢专用的CaO-Al2O3渣系保护渣。通过相图计算保护渣的基础组分w(CaO)/w(Al2O3)=1.0,Na2O质量分数为8%,MgO质量分数为3%,CaF2质量分数为4%~6%,B2O3质量分数为4%~10%,SiO2质量分数为4%~12%,TC质量分数为8%~10%。利用熔点熔速测定仪和旋转黏度计等设备重点研究了保护渣的熔化特性。得出适宜组分的CaO-Al2O3基高钛焊丝钢专用保护渣,熔点为1 037~1 129 ℃,熔速为64~79 s,黏度(1 300 ℃)为0.325~0.554 Pa·s。  相似文献   

16.
周云  张猛超  赵张发 《炼钢》2012,28(3):66-69
连铸时结晶器保护渣的黏度、结晶温度会对钢坯质量产生较大影响,采用旋转柱体法、黏温曲线分析法并结合扫描电子显微镜,研究了马鞍山钢铁股份有限公司3种不同保护渣的黏度、结晶温度。结果表明,马钢二炼钢厂生产Q420B铁塔用角钢的结晶器保护渣1 300℃时黏度0.298 Pa.s,结晶温度约1 180℃,为三者中最低。为降低卷渣情况和提高钢材质量,将黏度提高到0.35 Pa.s左右,并适当调节碱度使结晶温度升高,生产中卷渣及裂纹情况得到了较好的控制。  相似文献   

17.
采用旋转柱体法对不同类型的含氟连铸保护渣黏度进行检测,并基于Arrhenius方程通过非线性回归分析建立了新的黏度预测模型,分析了组分变化对黏度的影响。结合模型计算和实验检测,建立了CaF2?Na2O?Al2O3?CaO?SiO2?MgO渣系的等黏度图。结果表明,与传统的含氟连铸保护渣黏度预测模型相比,该模型计算的偏差在10%以内,当渣中w(CaF2)超过20%时,偏差逐渐增大,主要由于氟化物挥发造成炉渣成分变化,最终黏度实测值与炉渣初始成分不符,造成模型无法对黏度有效预测。此外,研究发现,CaF2的增加能显著降低炉渣黏度,而Al2O3和Na2O对黏度的影响受CaF2含量的限制。当w(CaF2)>17%,炉渣黏度随Al2O3含量增加而减小,当w(CaF2)<17%,Al2O3的增加使炉渣黏度显著增大;当w(CaF2)>11.5%,炉渣黏度随Na2O含量增加显著下降,当w(CaF2)<11.5%,Na2O含量变化对黏度的影响并不明显。此外,该等黏度图表明低黏度区w(CaF2)接近14%。通过调整等黏度图中各组分比例,可以改善保护渣的黏度和流动性,供钢铁工业应用。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号