首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Not restricted by the line-of-sight process, plasma immersion ion implantation (PIII) has shown great potential for inner surface modification, but the impact energy and retained dose turned to be very low. The process was investigated numerically and experimentally in this paper. The results show that a high percentage of low impact energy ions was the key factor that resulted in low impact energy on the inner surface. This was caused by sheath overlapping and appearance of the dead zone during inner surface PIII. Long pulse duration could alleviate this problem and increase ion impact energy on the inner surface, hence the implant depth, which was key factor for the modifying effect of PIII. Also, long pulse duration was helpful in improving the retained dose on the inner surface.  相似文献   

2.
Plasma--immersionionimplantation(Pill)isapowerfultechniqueforsurfacemodificationofmaterials[1'2].InthePillprocess)theobjectbeingimplantedisimmersedinaplasmaandrepeatedlypulsedtoahigh,negativevoltage(scallto--100kV).AtypicaltargetgeometryisshowninFig.la.Theapplicationofthisbiascreatesasheaththatexpandsintothesurroundingplasma,uncoveringpositiveionsandacceleratingthemtothetargetsurfaCe,wheretheymaybeimplanted.Theseimplantedionsmodifythesurfacewhiletightdimensionaltolerancesaremaintained.Aprin…  相似文献   

3.
采用新型的离子注入技术-离等子体浸没式离子注入对45钢进行了氮离子注入,测定了注入层的氮浓度俄歇剖面会布,显微硬度和摩擦性能,对磨损表面进行了扫描电镜分析。结果表明,采用等离子浸没式离子注入技术能够获得钢表改性效果。  相似文献   

4.
采用电子回旋共振(ECR)微波等离子体源离子渗氮技术对奥氏体不锈钢进行氮化处理,获得与等离子体浸没离子注入(PII)结果相似的高硬度、高耐磨性表面改性层。  相似文献   

5.
Plasma immersion ion implantation (PIII) is a potentially excellent interior surface treatment technique due to no line-of-sight restriction. However, some problems have been encountered due to the low ion energy and ion fluence non-uniformity especially for treatment of the interior wall of a thin tube. In this paper, a new method for inner surface PIII using internal inductively-coupled radio-frequency (RF) discharge is described. A cylindrical inductive coil inserted inside the tube serves as both the plasma source and grounded electrode to avoid overlapping of the plasma sheath fronts propagating from opposite sides. The effects of the gas species, gas pressure, RF power, and number of coil turns are investigated. Our results demonstrate the feasibility of this novel inner surface treatment method and the number of turns in the coil has a critical influence on the discharge behavior. If the number of turns is little, the plasma density is low and non-uniform inside the tube due to the relatively intense capacitively-coupled RF discharge at the two ends. In contrast, the plasma density and uniformity are evidently improved by using more turns in the coil.  相似文献   

6.
7.
Nitrogen-rich layers are formed on the surface of JIS-SKH51 tool steel substrates using the plasma immersion ion implantation (PIII) technique. An unbalanced magnetron sputtering (UBMS) system is then used to coat the steel substrates with diamond-like carbon (DLC) films of various thicknesses. The adhesive strength and wear resistance of the DLC films are then examined by performing nanoscratch and nanowear tests. Finally, the microstructures of the DLC films are analyzed using TEM and Raman spectroscopy. The nanoindentation test results show that the PIII treatment yields an effective improvement in both the hardness and the Young's modulus of the SKH51 substrates. Moreover, cross-sectional observations show that the implantation depth and microstructure of the nitrogen-rich surface layer are dependent on the nitrogen/hydrogen flow ratio used in the PIII process. The nanoscratch test results show that the PIII treatment improves the adhesion of the DLC film to the steel substrate. Furthermore, the Raman spectroscopy results indicate that the use of hydrogen in the PIII process limits the increase in the I(D)/I(G) ratio by increasing the DLC film thickness. Finally, the nanowear test results show that the deposition of a DLC coating with a sufficient thickness yields a significant improvement in the wear resistance of the steel substrate.  相似文献   

8.
Elevated-temperature plasma immersion ion implantation (PIII) is an effective non-line-of-sight technique to harden austenitic stainless steel by producing expanded austenitic phases in the near surface region. We report here a hybrid elevated-temperature, low/high voltage approach, which improves the efficiency while retaining the non-line-of-sight advantages of PIII. A low-voltage (4 kV), elevated-temperature (355°C) PIII process is first used to produce the modified layer, but the nitrogen concentration in this layer is typically relatively low and the thickness may not be adequate. This is followed by high-voltage (25 kV) PIII at a lower temperature to increase the nitrogen concentration and to achieve the desirable surface enhancement effects. To assess the efficacy of the technique, the samples are characterized using X-ray diffraction (XRD), nanohardness measurements, and secondary ion mass spectrometry (SIMS) depth profiling. The experimental results show that the nitrogen concentration increases by nearly 75% and the nitrogen penetration depth nearly doubles that of the low-voltage sample. The surface microhardness also improves by 150% and our data suggest that it is due to the formation of expanded austenites.  相似文献   

9.
Plasma immersion ion implantation (PIII) is a promising surface treatment technique for the irregular-shaped components. However, it is difficult to achieve uniform implantation along the surface of a concave sample due to the propagation and overlapping effect of plasma sheath. In this paper, a new ion implantation process is presented for improving the dose uniformity, especially for enhancing the lateral dose of the samples with concavities. In PIII enhanced by beam-line ions process, a beam-line ion source with certain energy is introduced from an external source into the concavity to suppress the sheath propagation and consequently to improve the dose uniformity. The time-dependent evolution of the potential, electrical field and the particle movement surrounding the surface of concave sample is studied by a particle-in-cell/Monte Carlo collision (PIC/MCC) simulation during a single bias high voltage (HV) pulse. The simulation results show that the plasma sheath propagation surrounding the concave sample is suppressed effectively by beam-line ions, and can be quasi-steady state during a single HV pulse. The influence of the energy of induced beam-line ions on the incident ion dose and energy distribution is discussed. Compared with the traditional PIII process, the dose uniformity of the sample surface is improved obviously due to the increase of the ions implanted into the lateral surface.  相似文献   

10.
采用灯丝放电和射频(RF)辉光放电等离子体浸没离子注入(PⅢ)工艺对45钢表面进行了氮离子注入强化处理。通过X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、显微硬度、针-盘磨损和电化学腐蚀试验等测试手段,分析比较了经灯丝放电PⅢ和RF辉光放电PⅢ改性后试样表面元素的浓度分布、显微硬度、摩擦磨损性能和耐腐蚀性能。结果表明:不同条件下的氮离子注入均能提高45钢表面的显微硬度、耐磨性和抗腐蚀性能;且RF辉光放电PⅢ处理后试样的显微硬度提高了76.8%,摩擦系数下降到0.3,与灯丝放电PⅢ处理后的试样相比,其表面强化效果更加明显。  相似文献   

11.
Traditional plasma ion immersion implantation (PIII) can effectively improve material mechanical property and corrosion resistance. But the modified layer by PIII is too thin for many industrial applications. High frequency and low voltage plasma immersion ion implantation (HLPIII) has advantages of PIII and nitriding. Comparing with traditional ion nitriding, HLPIII can obtain higher implantation energy and create a thick modified surface layer. In the present paper nitriding layers were synthesized on industrial pure iron using high frequency and low voltage plasma immersion ion implantation with different RF power (400 W, 600 W, and 800 W). The microstructure of the nitriding layers was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The mechanical properties such as microhardness and wear resistance were analyzed using HXD1000 microhardness and CSEM pin-on-disk wear testing machine. The anodic polarization characteristics were measured in a 0.9% NaCl solution at room temperature to examine the corrosion resistance of the nitriding layer. The results reveal that Fe2N, Fe3N and Fe4N coexist in the nitriding layer. The nitriding layer is a corrosion protective coating on industrial pure iron in 0.9% NaCl solution. The hardness, wear resistance and corrosion resistance of the nitrided layers on industrial pure iron increase with RF power.  相似文献   

12.
Using a one-dimensional self-consistent fluid model, the effect of pulse rise time on charging effects at dielectric surfaces is investigated during plasma immersion ion implantation (PIII) with planar and cylindrical geometries. The numerical results demonstrate that the pulse rise time plays an important role in PIII process with dielectric substrates. It is found that the charge dose accumulated on the dielectric surface is significant as decreasing pulse rise time, and the surface potential decreases at the later stage of the pulse, which results in the lower ion impact energy. On the other hand, the longer pulse rise time would lead to the lower charge dose accumulated on the dielectric surface and higher ion impact energy at the later stage of the pulse, which would elevate the effective implanted dose and introduce the ions to the depth deep enough for surface modification.  相似文献   

13.
Plasma immersion ion implantation (PIII) using halogen or oxygen plasmas has been employed for the surface passivation of advanced alloys with a view to their applications for high-temperature oxidation protection and in medicine. Special devices have been designed to ensure efficient plasma generation and reduce sample contamination arising from the interaction of the aggressive plasmas with the chamber components under bias. The paper addresses two main applications of PIII, namely oxidation protection of gamma-titanium aluminides (γ-TiAl), and modification of the surface properties of shape-memory superelastic nickel-titanium (NiTi) alloys. TiAl intermetallics are of great interest for advanced automobile, aerospace and power generation applications due to their low specific weight and high strength. However, excessive oxidation occurring in these materials at temperatures above 700 °C has hindered their widespread use. Samples of technical γ-TiAl alloys have been treated by both beamline implantation of Cl or F, and PIII of Cl using an Ar/Cl gaseous blend or alternative precursor gases. High-temperature oxidation behavior has been examined under conditions of either isothermal or thermocyclic oxidation at 900 °C. Optimized implantation processing produces marked improvement in the oxidation behavior of the γ-TiAl samples. On the basis of these results, a commercially viable process for enhancing the high-temperature oxidation resistance of γ-TiAl alloys using PIII of halogens is being developed. NiTi alloys are promising materials for use in biomedicine, provided that the release of Ni ions into the body environment can be sufficiently reduced. Oxygen PIII at substrate temperatures below 250 °C results in the formation of a transparent rutile TiO2 surface layer with a Ni content down to below 1 at.%. This layer in turn serves as a barrier to the corrosion and out-diffusion of Ni ions. Biocompatibility tests show superior in vitro blood compatibility in comparison with untreated NiTi samples.  相似文献   

14.
1.IntroductionIonbombardmelltusingplasmaimmersionmethodhasprovenaneffectivesurfacemodificationtechnique[2,3].Plasmaimmersionionimplantation(Pill)cansignificantlyimprovethesurfacepropertiesofthecomponents,suchashardness,friction,wear--resistanceandcorrosion--resistanceofthematerials.Meanwhileitsbiggestadvantageistheabilitytotreatirregularlyshapedobjectswithoutthenecessityoftargetmanipulation.Pillprocesscanbeconductedbyeitheratalowtemperature(<100'C)orelevatedtemperatureconditions(usually300'C…  相似文献   

15.
In the present work, the NiTi surface was modified by nitrogen plasma immersion ion implantation (PIII) in an effort to improve the corrosion resistance and mitigate nickel release from the materials. The implanted nitrogen depths and thicknesses of the surface TiN barrier layers were varied by changing the pulsing frequencies during PIII. In order to determine the optimal parameters including the pulsing frequencies, electrochemical tests including open circuit potential (OCP) measurements and potentiodynamic polarization tests were conducted on the untreated and N-implanted NiTi in simulated body fluids (SBF). Our results reveal that the nitride layer produced using a frequency of 50 Hz has the best stability under the OCP conditions and the TiN layer produced using 200 Hz has the highest potentiodynamic stability after immersion in SBF for a long time. The observation can be correlated to the temperature during PIII and the thickness of TiN layer. The TiN layer on the NiTi surface favors deposition of Ca-P composites thereby compensating for the instability of the TiN layer produced at a higher frequency.  相似文献   

16.
采用等离子合成TiN渗镀层方法,在碳钢表面形成TiN沉积层+含TiN的扩散层组织,Ti和N原子由表及里呈梯度分布,表面是均匀、致密的TiN胞状组织,显微硬度在20 GPa~25 GPa之间;沉积层与基体之间有一扩散过渡区,结合力好,无剥落现象.X射线衍射结果表明:渗镀层表面为TiN层,(200)晶面的衍射峰最强,具有明显的择优取向.将TiN渗镀试样与不锈钢1Cr18Ni9Ti和Q235钢在1 mol/L H2SO4溶液中进行电化学腐蚀对比实验表明:TiN渗镀层的耐蚀性能比不锈钢和Q235钢基体分别提高了1.4和4.2倍.   相似文献   

17.
CoCr alloys are widely used for medical applications, e.g. total hip replacements or coronary stents. Nevertheless, an increase in the surface hardness and a reduction of the wear rate is still desirable to improve the biocompatibility. Plasma immersion ion implantation (PIII) at different temperatures, acceleration voltages and working pressures is used to determine the nitrogen diffusivity in the CoCr alloys SY21med, L605 and HS188. Depending on the temperature, two different treatment regimes can be distinguished, independent of the ion energy. At low temperatures, a diffusion process with an activation energy of 1.0-1.1 eV is present, indicative of interstitial nitrogen diffusion. Beyond 350 °C, a reduced activation energy of 0.5-0.7 eV is observed. Additionally, a strong dependency of the layer thickness on the working pressure in the range 0.3-0.8 Pa was observed for the temperature dependent diffusion regime, which suggests a synergistic interplay of adsorption and implantation during PIII. Below 500 °C, an increase of the diffusion coefficient by three orders of magnitude was observed for PIII, compared with pure plasma nitriding.  相似文献   

18.
为改善TC4合金表面的耐磨性能和抗腐蚀性能,用等离子体浸没离子注入(PIII)技术在合金表面注入不同剂量的金属银.采用XRD、XPS、AES等方法分析改性层的元素浓度分布和化学组成,研究Ag离子注入后试样表面的耐摩擦磨损性能、抗腐蚀性能、纳米硬度和弹性模量.结果表明,表面改性层中主要存在Ag相,同时含有少量的TiAg;处理后注入剂量为1×10~(17) ions/cm~2试样的纳米硬度和弹性模量分别提高62.5%和54.5%;磨损面积减小57.6%;摩擦系数由基体合金的0.78下降到0.2.在3.5%NaCl溶液中的腐蚀电位升高,腐蚀电流密度明显减小,耐蚀性得到了显著改善.  相似文献   

19.
氟塑料是性能优异的防腐蚀、防结垢材料,但是其成型工艺较差。通过对换热器管束内表面的氟塑料涂层制备工艺的研究,成功地制备了均匀致密的氟塑料涂层。  相似文献   

20.
Ta等离子体渗氮的非平衡热力学   总被引:3,自引:0,他引:3  
讨论了Ta表面等离子体渗氨的热力学问题,将超平衡氢和非平衡热力学的反应耦合理论引入离子渗氮反应的计算,从理论上解释了等离子体和氢在Ta表面渗氮过程中的作用,给出了渗氮条件下的Na-N-O非平衡定态相图,与实验验结果符合得较好,实验表明,氢和等离子体的存在,有利于提高氮原子的活度,促进热力学上不稳定的Ta的氮化物的形成,抑制粗糙的Ta的氧化物的形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号