首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The central composite design (CCD) technique was used to study the effect of the Fenton's peroxidation on the removal of organic pollutants from olive oil mill wastewater (OMW). The ratio of hydrogen peroxide-to-Fe(II) (x1) was between 1.67 and 8.33. Fe(II) concentration was constant at 0.03 M while the H2O2 concentration was set at three levels: 0.05, 0.15 and 0.25 M. Based on the molarity ratio, the selected ratio were in the low range of Fe(II)-to-H2O2 ratio (<1). While based on the wt/wt ratio, the tested Fe(II)-to-H2O2 ratios were in the range of < or =1:5. pH (x2) was between 3 and 5. The concentration of OMW (x3) was varied between 40 and 100%. The influence of these three independent variables on the four dependent variables, i.e. COD, total phenolics (TP), color and aromaticity removal was evaluated using a second-order polynomial multiple regression model. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) value of 0.902-0.998, thus ensuring a satisfactory adjustment of the second-order regression model with the experimental data. H2O2-to-Fe(II) ratio had significant effect on all the four dependent variables. The positive sign for the regression coefficient of this regressor variable indicated that the level of the pollutant removal increased with the increased levels of factor x1 from 1.67 to 8.33 and this effect was the most pronounced for TP removal. pH had also significant effect on the pollutant removal and the effect was the most noticeable for TP reduction. The negative coefficient of this variable (pH) indicated that level of the pollutant removal decreased as the pH increased from 3 to 5. The negative coefficient of the interaction between variable x1 and x2 indicated that a simultaneous increase in H2O2-to-Fe(II) ratio with decrease in the pH of the reaction led to an increase in the COD, TP and color removal. Quadratic models were predicted for the response variable, i.e. pollutant removal, and the maximum model-predicted removals were 56, 100, 33 and 32% for COD, TP, color and aromaticity, respectively. Optimum conditions for this wastewater treatment was obtained based on the performance of the Fenton's peroxidation in the experiment where the H2O2-to-Fe(II) ratio was at its high level (8.33) and the pH and OMW concentration were 4 and 70%, respectively.  相似文献   

2.
The use of an integrated treatment scheme consisting of wet hydrogen peroxide catalytic oxidation (WHPCO) followed by two-stage upflow anaerobic sludge blanket (UASB) reactor (10l each) for the treatment of olive mill wastewater was the subject of this study. The diluted wastewater (1:1) was pre-treated using Fenton's reaction. Optimum operating conditions namely, pH, H(2)O(2) dose, Fe(+2), COD:H(2)O(2) ratio and Fe(+2):H(2)O(2) ratio were determined. The UASB reactor was fed continuously with the pre-treated wastewater. The hydraulic retention time was kept constant at 48h (24h for each stage). The conventional parameters such as COD, BOD, TOC, TKN, TP, TSS, oil and grease, and total phenols were determined. The concentrations of polyphenolic compounds in raw wastewater and effluents of each treatment step were measured using HPLC. The results indicated a good quality final effluent. Residual concentrations of individual organic compounds ranged from 0.432 mg l(-1) for rho-hydroxy-benzaldhyde to 3.273 mg l(-1) for cinnamic acid.  相似文献   

3.
The abatement of ferulic acid (FA), a polyphenolic constituent of olive mill wastewater, is studied in the pH range 5.0-7.0 by using hydrogen peroxide and an amorphous iron oxide as catalyst. The effect of pH, catalyst load, hydrogen peroxide and substrate starting concentrations is assessed during the investigation. A suitable reaction scheme is developed and used to build a mathematical model which satisfactorily describes the system's behavior. Kinetic constants for the proposed scheme as well as the total active site concentration of the catalyst in the studied pH range are estimated. The occurrence of internal mass-transfer limitation for the adopted granulometric fraction of the catalyst is demonstrated.  相似文献   

4.
We have studied the changes in the physiology and nutritional quality of Lycopersicon esculentum exposed to olive mill wastewater (OMW) with regard to cultivation in sand and soil. Tomato plant performance decreased with increasing concentration of OMW to both substrates. Root was more sensitive to OMW than the upper parts of the plants, grown either in sand or in soil for 10 days and 3 months, respectively, probably due to the direct OMW toxicity on roots as compared to other parts. Significant restriction on uptake and translocation of nutrients (K, Na, Fe, Ca and Mg) under OMW application was found. The decrease in the photochemical efficiency of PSII photochemistry in the light adapted state and the big decrease in photochemical quenching, indicate that OMW resulted in diminished reoxidation of Q(A)(-) and started to inactivate the reaction centers of PSII. The OMW supply on soil and sand, resulted in leaf water stress and lesser water use efficiency. Plants treated with high OMW concentration, produced fewer but bigger tomatoes as compared to plants treated with lower OMW concentration. Generally, fruit yield and nutritional value was inhibited under OMW application.  相似文献   

5.
The primary objective was to study the purification of an oily wastewater from a lubricant production unit using ultraviolet irradiation and hydrogen peroxide. The influence of hydrogen peroxide concentration, initial pH of the solution and of the addition of ferric ions on the chemical oxygen demand (COD) was examined. In each case, the concentration of the compounds contained in the oily wastewater was determined. It was shown that a 20-45% COD removal was achieved with 830-1660 mg l(-1) H(2)O(2). Gas chromatography-mass spectrometry analysis showed that the organic compounds of the wastewater decomposed to organic acids that were very resistant to photo-oxidation. Among these compounds, ethylene glycol remained almost unchanged by the attack from hydroxyl radicals. Acidic pH and Fe(III) addition enhanced significantly the photo-oxidation of the wastewater.  相似文献   

6.
Olive mill wastewater (OMW) is characterised by its high suspended solids content (SS), high turbidity (NTU), chemical oxygen demand (COD) concentration up to 100 gl(-1) and toxic phenolic compounds concentration up to 10 gl(-1). This study examined the effect of a physico-electrochemical method to detoxify olive mill wastewater prior an anaerobic biotreatment process. The proposed pre-treatment process consisted in a preliminary electrocoagulation step in which most phenolic compounds were polymerised, followed by a sedimentation step. The BOD(5)/COD ratio of the electrocoagulated OMW increased from 0.33, initial value, to 0.58. Furthermore, the sedimentation step yielded the removal of 76.2%, 75% and 71% of phenolic compounds, turbidity and suspended solid, respectively, after 3 days of plain settling. The combination of electrocoagulation and sedimentation allowed a COD reduction and decoloration of about 43% and 90%, respectively. This pre-treatment decreases the inhibition of Vibrio fisheri luminescence by 66.4%. Continuous anaerobic biomethanization experiments conducted in parallel with raw OMW and electrocoagulated OMW before and after sedimentation at a loading rate of 6g COD l(-1)day(-1), proved that the final pre-treated OMW was bioconverted into methane at high yield while raw OMW was very toxic to anaerobic microorganisms.  相似文献   

7.
Pulp mill effluent containing toxic chemicals was treated by different advanced oxidation processes (AOPs) consisting of treatments by hydrogen peroxide, Fenton's reagent (H2O2/Fe2+), UV, UV/H2O2, photo-Fenton (UV/H2O2/Fe2+), ozonation and peroxone (ozone/H2O2) in laboratory-scale reactors for color, total organic carbon (TOC) and adsorbable organic halogens (AOX) removals from the pulp mill effluent. Effects of some operating parameters such as the initial pH, oxidant and catalyst concentrations on TOC, color, AOX removals were investigated. Almost every method used resulted in some degree of color removal from the pulp mill effluent. However, the Fenton's reagent utilizing H2O2/Fe2+ resulted in the highest color, TOC and AOX removals under acidic conditions when compared with the other AOPs tested. Approximately, 88% TOC, 85% color and 89% AOX removals were obtained by the Fenton's reagent at pH 5 within 30 min. Photo-Fenton process yielded comparable TOC (85%), color (82%) and AOX (93%) removals within 5 min due to oxidations by UV light in addition to the Fenton's reagent. Fast oxidation reactions by the photo-Fenton treatment makes this approach more favorable as compared to the others used.  相似文献   

8.
Hydrogen peroxide has been used to oxidize a sorbed aromatic contaminant in a loamy sand with 195.9 g kg(-1) of organic carbon by using iron as catalyst at 20 degrees C. The 2,4-dimethylphenol (2,4-DMP) was chosen as pollutant. Because of this soil generates a slightly basic pH in contact to an aqueous phase the solubility of the iron cation was determined in absence and presence of a chelating agent (l-ascorbic acid, l-Asc) and with and without soil. From results, it was found that in presence of soil the iron cation was always adsorbed or precipitaed onto the soil. Therefore, the procedure selected for soil remediation was to add firstly the iron solution used as catalyst and following the hydrogen peroxide solution used as oxidant. As iron cation is sorbed onto the soil before the oxidant reagent is provided a heterogeneous catalytic system results. This modified Fenton runs have been carried out using 0.11 mg(2,4-DMP) g(-1)(soil) and 2.1 mg(Fe) g(-1)(soil). The H(2)O(2)/pollutant weight ratios used were 182 and 364. The results show that H(2)O(2) oxidizes 2,4-DMP producing CO(2) and acetic acid. After 20 min of reaction time a pollutant conversion of 75% and 86% was found, depending on the H(2)O(2) dosage. Moreover, it was found that hydrogen peroxide was heterogeneously decomposed by the soil (due to its organic and/or inorganic components) and its decomposition rate decreases when the iron was previously precipitated-impregnated into the soil.  相似文献   

9.
This paper describes for the first time the extension of the anaerobic digestion model No. 1 (ADM1) to handle and simulate the anaerobic degradation processes of phenol compounds and homologues in olive mill wastewater (OMW) and olive mill solid waste (OMSW) at thermophilic temperature (55 degrees C). The general structure of the ADM1 was not changed except for the modifications related to the inclusion of phenolic compounds degradation processes into acetate and further into methane and CO(2). The effect of soluble phenolic compounds upon pH was taken into account in the pH simulation equations. The inhibitory effect of phenolic compounds on the fermenting process and methanogenic sub-populations was accounted for by the use of non-competitive inhibition functions. The most sensitive and new phenolic parameters were calibrated and validated using experimental data from our previous study dealing with the thermophilic anaerobic co-digestion of OMW with OMSW in semi-continuous tubular digesters. The simulation results indicated that the extended ADM1 was able to predict with reasonable accuracy effluent phenol concentrations and gas flow rates and effluent pH of various influent concentrations digested at hydraulic retention times (HRTs) of 36 and 24 days.  相似文献   

10.
Optimization of Fenton process for the treatment of landfill leachate   总被引:18,自引:0,他引:18  
The treatment of landfill leachate by Fenton process was carried out in a batch reactor. The effect of operating conditions such as reaction time, pH, H2O2 to Fe(II) molar ratio, Fenton's reagent dosage, initial COD strength, feeding mode, the type of polymer, and temperature on the efficacy of Fenton process was investigated. It is demonstrated that Fenton's reagent can effectively degrade leachate organics. Fenton process was so fast that it was complete in 30 min. The oxidation of organic materials in the leachate was pH dependent and the optimal pH was 2.5. The favorable H2O2 to Fe(II) molar ratio was 1.5, and organic removal increased as dosage increased at the favorable H2O2 to Fe(II) molar ratio. The efficacy of Fenton process was improved by adding Fenton's reagent in multiple steps than that in a single step. Furthermore, the stepwise addition of both hydrogen peroxide and ferrous iron was more effective than that of hydrogen peroxide only. Sludge settling characteristics were much improved with the addition of the proper polymer. Temperature gave a positive effect on organic removal.  相似文献   

11.
A process of dibutylsulfide (DBS) oxidation using advanced methods of oxidation with ozone and hydrogen peroxide was studied. It was demonstrated that depending on pH value there are two mechanisms of DBS oxidation present: ionic and radical. The ionic mechanism predominates in acidic environment and the radical mechanism predominates in alkaline environment. At high pH ozone stability decreases and hydrogen peroxide has a deciding effect on DBS oxidation rate. At pH 9, and at high concentration of hydrogen peroxide (ranging from 0.1 to 1 mol/L), a clear increase in DBS decomposition rate was observed. That was caused by production of hydroperoxide radicals in reaction of hydrogen peroxide and ozone. In solutions pH value of which is close to 2, the rate of DBS oxidation by ozone alone is slower than in a O(3)/H(2)O(2) system, regardless the H(2)O(2) concentration. For higher H(2)O(2) concentrations (ranging from 0.1 to 1 mol/L), regardless the pH value of the solution, oxidation in a O(3)/H(2)O(2) system is faster, compared to a situation in which ozone is a sole oxidizer. For H(2)O(2) concentrations below 0.1 mol/L and when pH>2DBS oxidation in O(3)/H(2)O(2) system is slower compared to the situation in which ozone was the only oxidizer.  相似文献   

12.
Advanced oxidation processes including UV, UV/H(2)O(2), Fenton reaction (Fe(II)/H(2)O(2)) and photo-Fenton process (Fe(II)/H(2)O(2)/UV) for the treatment of paper mill wastewater will be investigated. A comparison among these techniques is undertaken with respect to the decrease of chemical oxygen demand (COD) and total suspended solids (TSS) and the evolution of chloride ions. Optimum operating conditions for each process under study revealed the effect of the initial amounts of Fe(II) and hydrogen peroxide. Of the tested processes, photo-Fenton process was found to be the fastest one with respect to COD and TSS reduction of the wastewater within 45 min reaction time under low amounts of Fe(II) and hydrogen peroxide of 0.5 and 1.5mg/L, respectively, and amounted to 79.6% and 96.6% COD and TSS removal. The initial biodegradability of the organic matter present in the effluent, estimated as the BOD(5)/COD, was low 0.21. When the effluent was submitted to the different types of AOPs used in this study, the biodegradability increases significantly. Within 45 min of reaction time, the photo-Fenton process appears as the most efficient process in the enhancement of the biodegradability of the organic matter in the effluent and the BOD(5)/COD ratio increased from 0.21 to 0.7.  相似文献   

13.
Advanced oxidation processes (AOPs), namely photo-Fenton, Fenton-like, Fenton and UV/H(2)O(2), have been investigated in the removal of organic matter and colour from landfill leachates. The leachate was characterised by high COD, low biodegradability and intense dark colour. Evaluation of COD removal as a function of the operation variables (H(2)O(2), Fe(2+), Cu(2+), UV) led to results that ranged between 30% and 77% and it was observed that the removal efficiencies decreased in the order: photo-Fenton>Fenton-like>Fenton>UV/H(2)O(2)>UV. Thus, a detailed experimental analysis was carried out to analyse the effect of the hydrogen peroxide and iron concentrations and the number of reagent additions in the photo-Fenton process, observing that: (i) the COD removal ranged from 49% to 78% depending on the H(2)O(2) dose, (ii) the total amount of organic matter removed was increased by adding the reagent in multiple steps (86%), (iii) iron concentration corresponding to a Fe(2+)/COD mass ratio=0.33 was found to be the most favourable and, (iv) after a neutralization step, the colour and residual concentrations of iron and H(2)O(2) were practically negligible in the final leachate solution.  相似文献   

14.
Application of Fenton oxidation to cosmetic wastewaters treatment   总被引:1,自引:0,他引:1  
The removal of organic matter (TOC and COD) from a cosmetic wastewater by Fenton oxidation treatment has been evaluated. The operating conditions (temperature as well as ferrous ion and hydrogen peroxide dosage) have been optimized. Working at an initial pH equal to 3.0, a Fe(2+) concentration of 200 mg/L and a H(2)O(2) concentration to COD initial weight ratio corresponding to the theoretical stoichiometric value (2.12), a TOC conversion higher than 45% at 25 degrees C and 60% at 50 degrees C was achieved. Application of the Fenton oxidation process allows to reach the COD regional limit for industrial wastewaters discharges to the municipal sewer system. A simple kinetic analysis based on TOC was carried out. A second-order equation describes well the overall kinetics of the process within a wide TOC conversion range covering up to the 80-90% of the maximum achievable conversion.  相似文献   

15.
The decolourization and mineralization of a solution of an azo dye using a catalyst based on Fe(II) supported on Y Zeolite (Fe(II)-Y Zeolite) and adding hydrogen peroxide (heterogeneous Fenton process) have been studied. The catalyst was prepared by ion exchange, starting from a commercial ultra-stable Y Zeolite. All experiments were performed on a laboratory scale set-up. The effects of different parameters such as initial concentration of the dye, initial pH of the solution of the dye, H(2)O(2) concentration, temperature and ratio of amount of catalyst by amount of solution on the decolourization efficiency of the process were investigated. A percentage of colour removal of 99.3±0.2% and a mineralization degree of 84±5% of the solution of the dye were achieved in only 6 min of contact time between the catalyst and the solution, under the following conditions: initial concentration of the dye of 50 ppm, pH 5.96, 8.7 mM of H(2)O(2), T of 80°C and catalyst concentration of 15 g/L. Moreover, the catalyst Fe(II)-Y Zeolite can be easily filtered from the solution, does not leach any iron into the solution (avoiding any secondary contamination due to the metal) and its effectivity can be reproduced after consecutive experiments.  相似文献   

16.
The zero-valent iron (ZVI) reduction succeeds for decolorization, while UV/H(2)O(2) oxidation process results into mineralization, so that this study proposed an integrated technique by reduction coupling with oxidation process in order to acquire simultaneously complete both decolorization and mineralization of C.I. Acid Black 24. From the experimental data, the zero-valent iron addition alone can decolorize the dye wastewater yet it demanded longer time than ZVI coupled with UV/H(2)O(2) processes (Red-Ox). Moreover, it resulted into only about 30% removal of the total organic carbon (TOC), which was capable to be effectively mineralized by UV/H(2)O(2) process. The proposed sequential ZVI-UV/H(2)O(2) integration system cannot only effectively remove color and TOC in AB 24 wastewater simultaneously but also save irradiation power and time demand. Furthermore, the decolorization rate constants were about 3.77-4.0 times magnitude comparing with that by UV/H(2)O(2) process alone.  相似文献   

17.
环境监测、食品工业、临床、制药等领域对过氧化氢(H_2O_2)的快速、准确检测有极大的需求,而电化学检测方法由于灵敏度高、响应快、检测限低等特点被认为是最理想的H_2O_2检测方法.本文利用电化学沉积的方法将Pd纳米颗粒沉积到四氧化三铁/石墨烯(Fe_3O_4/rGO)纳米复合材料修饰的玻碳电极表面,形成基于新型磁性纳米复合材料的H_2O_2无酶传感器;并采用循环伏安和计时安培电流等方法对修饰电极的电化学性能进行了表征.结果表明:制备的Pd/Fe_3O_4/r GO/GCE对H_2O_2的催化还原显示出较好的电催化活性,Pd纳米颗粒和Fe_3O_4/rGO在催化H_2O_2还原的过程中表现出了良好的协同作用.测定H_2O_2的线性范围为0.05~1 m M和1~2.6 m M两段,最低检测限达到3.918μM(S/N=3).并且该传感器具有较高的灵敏度和较好的重现性和抗干扰性,具有一定的实际应用价值.  相似文献   

18.
Decolorization and mineralization of bakery's yeast industry effluent by photochemical advanced oxidation processes (AOPs) utilizing UV with hydrogen peroxide and Photo-Fenton, were investigated in a laboratory scale photo-reactor equipped with a 16 W low-pressure mercury vapor lamp. The Box-Wilson experimental design method was employed to evaluate the effects of major process variables (e.g. pH, oxidant dose, and irradiation time) on the decolorization efficiency. Response function coefficients were determined by regression analysis of the experimental data and prediction results agreed with the experimental results. The optimum hydrogen peroxide concentration and irradiation time were found to be 5 mM and 50 min at pH 3, respectively, for UV/H2O2 process. In the Photo-Fenton process application, maximum decolorization efficiency (96.4%) was obtained at the optimum reaction conditions that were 100 mM H2O2 and 1 mM Fe(II) doses at pH 3, and 10 min of irradiation time.  相似文献   

19.
The relative oxidation of representative aromatic and aliphatic hydrocarbons found in gasoline was evaluated to provide the foundation for risk-based treatment of petroleum-contaminated soils and groundwater using modified Fenton's reagent (catalyzed hydrogen peroxide). Aromatic components of gasoline are considered more hazardous than the aliphatic fractions due to their higher mobility in the subsurface and their higher acute and chronic toxicities. Benzene, toluene, and mixed xylenes (BTX) were selected as aromatic compounds representative of unleaded gasoline, while nonane, decane, and dodecane (NDD) were used as model aliphatic compounds. The effects of hydrogen peroxide (H(2)O(2)) concentration, iron catalyst concentration, and pH on the degree of treatment of the model compounds were investigated using central composite rotatable experimental designs. Oxidation of the aromatic compounds required less iron and less H(2)O(2) than did oxidation of the aliphatic compounds, while proceeding more effectively at near-neutral pH. Greater than 95% of the BTX was treated at near-neutral pH using 2. 5% H(2)O(2) and 12.5 mM iron (III), while only 37% nonane, 7% decane, and 1% dodecane oxidation was achieved under the same conditions. The results show that the more toxic and mobile aromatic fraction was more effectively oxidized using less H(2)O(2) and more economical conditions, including near-neutral pH, compared to the aliphatic fraction. A process design based on treating only the aromatic fraction of petroleum may provide significantly lower costs when using modified Fenton's reagent for the treatment of contaminated soils and groundwater.  相似文献   

20.
The bacteria that could grow on media containing olive mill wastewater (OMW) were isolated and their lipase production capacities were investigated. The strain possessing the highest lipase activity among 17 strains grown on tributyrin agar medium was identified as Bacillus sp. The effect of initial pH on the lipase activity was investigated in tributyrin medium and pH 6 was found to be the optimal. The liquid medium composition was improved by replacing tributyrin with various carbon sources. Among the media containing different compositions of triolein, trimyristin, trilaurin, tricaprin, tricaprylin, tributyrin, triacetin, Tween 80, OMW, glucose, and whey; the medium contained 20% whey +1% triolein was found to give the highest lipase activity. Cultivation of Bacillus sp. in the optimal medium at pH 6 and 30 degrees C for 64h resulted in the extracellular and intracellular lipase activities of 15 and 168U/ml, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号