首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 652 毫秒
1.
采用0.35μm CMOS工艺设计并实现了一种新的应用于1.25Gb/s光纤通信接收机的高灵敏度、宽动态范围跨阻放大器电路。引入电流注入技术提高输入管跨导、优化噪声性能、提高灵敏度。自带直流反馈实现直流消除功能,同时采用自动增益控制机制,提高动态范围。仿真结果表明,该电路具有82.02dBΩ的跨阻增益、872.7MHz的带宽、23.74kHz的低频截止频率,输入等效噪声电流为4.08pA/Hz(1/2),最大输入光信号为+3dBm(2mA),在3.3V的电源电压下,芯片功耗为43.4mW。  相似文献   

2.
石丹  高博  龚敏 《半导体光电》2018,39(2):201-205,215
针对生物信号微弱、变化范围大等特点设计了一种用于检测微弱电流的全差分跨阻放大器(TIA)电路结构。不同于传统电路的单端输入,该结构采用高增益的全差分两级放大器实现小信号输入及轨到轨输出。基于CSMC 0.18μm CMOS工艺,采用1.8V电源电压对设计的电路进行了仿真,仿真结果表明:TIA输入电流动态范围为100nA^10μA,最大跨阻增益达到104.38dBΩ,-3dB带宽为4MHz,等效输入噪声电流为1.26pA/Hz。对电路进行跨阻动态特性仿真表明,在输入电流为100nA时,输出电压的动态摆幅达到3.24mV,功耗仅为250μW,总谐波失真(THD)为-49.93dB。所设计的高增益、低功耗、宽输入动态范围TIA适用于生物医疗中极微小生物信号的采集,可作为模块电路集成在便携设备中。  相似文献   

3.
基于0.18 μm BiCMOS工艺,设计了一种适用于光纤通信的10 Gbit/s光接收机前置放大器。电路由跨阻放大器、两级可变增益放大器、缓冲器、直流偏移消除电路、峰值探测器和自动增益控制环路组成。跨阻放大器采用并联-并联负反馈结构,在满足增益、带宽要求前提下实现低噪声特性。后级放大器引入了增益可变控制,获得宽输入动态范围,同时采用电容简并技术提升带宽。版图后仿真结果表明,在小信号光电流输入下,放大器的差分跨阻增益为10.7 kΩ,-3 dB带宽为7.4 GHz,平均等效输入噪声电流密度为16.9 pA/Hz。可调增益范围在25.2~80.6 dBΩ内,输入动态范围超过40 dB。在3.3 V电压下,静态功耗为166 mW,版图尺寸为764 μm540 μm。  相似文献   

4.
一种高增益宽带共栅CMOS电流模跨阻放大器   总被引:1,自引:1,他引:0  
文章提出了一种高增益宽带共栅CMOS电流模跨阻放大器,从理论上对电路进行了分析。采用0.5μm CMOS工艺进行HSPICE仿真,结果表明,该电路结构能达到57dBΩ跨阻增益,1.5GHz带宽,6.4pA/sqrt(Hz)等效输入总电流噪声;在输入电流为200pA时,其输出电压的动态摆幅达到220mV,功耗仅为76mW。  相似文献   

5.
为了处理宽动态范围的激光脉冲回波信号,设计了一种带有自适应增益控制技术的模拟前端。通过分段调节跨阻放大器的跨阻增益,实现了在1 μA~1 mA范围内输入电流与输出电压近似线性的关系。提出了自触发使能方法,可以在没有外部清零信号的情况下连续接收回波信号。提出了一种新型差分移位时刻鉴别电路,能有效减小行走误差。电路采用0.11 μm CMOS工艺设计,后仿真结果表明,-3 dB带宽为530 MHz,最大跨阻增益为103 dBΩ,等效输入噪声电流谱密度为6.47 pA·Hz-1/2@350 MHz,输入动态范围为60 dB,功耗小于100 mW。该模拟前端电路设计适用于飞行时间脉冲激光雷达。  相似文献   

6.
赵明剑  王静 《微电子学》2018,48(1):37-42
面向人体介质通信领域,设计了一种基于0.18 μm CMOS工艺的接收模拟前端电路。采用有源电感零极点补偿技术,在保证电路噪声性能与增益的同时,有效拓展了电路线性带宽;通过在调整型共源共栅结构中引入高阻输入晶体管及负载管,使电路不仅具有良好的电流模信号放大能力,还具有电压模信号接收放大功能。芯片核心尺寸为379.3 μm×118.9 μm。后仿真结果表明,在电流输入模式下,电流等效输入噪声为8.36 pA/Hz@50 MHz,-3 dB带宽为0.26~114 MHz,跨阻增益为70.3~112.5 dBΩ;在电压输入模式下,电压等效输入噪声为4.43 nV/Hz@50 MHz,-3 dB带宽为0.45~112 MHz,电压增益为44~83.18 dB。对比人体通信接收机前端相关文献,该设计在带宽、噪声及兼容性方面具有应用优势。  相似文献   

7.
光通信用宽动态范围10 Gb/s CMOS跨阻前置放大器   总被引:1,自引:0,他引:1  
刘全  冯军 《半导体光电》2009,30(2):264-267
采用UMC 0.13 μm CMOS工艺,设计了一种应用于SDH系统STM-64(10 Gb/s)光接收机前置放大器.该前置放大器采用具有低输入阻抗特点的RGC形式的跨阻放大器实现.同时,引入消直流电路来扩大输入信号的动态范围.后仿真结果表明:双端输出时中频跨阻增益约为57.6 dBΩ,-3 dB带宽为10.7 GHz,平均等效输入噪声电流谱密度为18.76 pA/sqrt(Hz),1.2V单电压源下功耗为21 mW,输入信号动态范围40 dB(10 μA~1 mA).芯片面积为0.462 mm×0.566 mm.  相似文献   

8.
一种高增益低噪声低功耗跨阻放大器设计与实现   总被引:1,自引:0,他引:1  
唐立田  张海英  黄清华  李潇  尹军舰   《电子器件》2009,32(3):566-569
采用TSMC 0.18 μm CMOS工艺设计并实现了一种高增益、低噪声和低功耗跨阻放大器.针对某种实用的光电二极管,在寄生电容高达3 pF的情况下,采用RGC输入、无反馈电阻的电路结构,合理实现了增益、带宽、噪声、动态范围以及低电源电压等指标间的折中.测试结果表明单端跨阻增益高达78 dB·Ω,-3 dB带宽超过300 MHz,100 MHz处的等效输入噪声电流谱密度低至6.3 pA/平方根Hz,功耗仅为14.4 mW.芯片面积(包括所有PAD)为500 μm×460 μm.  相似文献   

9.
张春茗  王浩  宋茹雪 《微电子学》2024,54(2):201-206
采用UMC 28 nm CMOS工艺,设计了一款应用于光接收机、工作在80 Gbit/s PAM4的低噪声模拟前端电路(AFE)。对噪声和带宽进行折中设计,采用了跨阻放大器(TIA)级联连续时间线性均衡器(CTLE)技术和输入电感峰化技术。为了更好地控制低频增益,进一步拓展带宽,采用了跨导跨阻(gm-TIA)结构的VGA。在输入电容100 fF和供电电压1.2 V下,实现的跨阻增益为48.5 dBΩ,带宽为36.1 GHz,平均等效输入噪声电流为22.6 pA/Hz,功耗为14.5 mW。  相似文献   

10.
王巍  武逶  冯其  王川  唐政维  王振  袁军 《半导体光电》2013,34(6):920-923,929
提出了一种基于TSMC0.18μm CMOS工艺的低噪声、低功耗的10Gb/s光通信接收机跨阻前置放大器(TIA)的设计。该TIA电路采用具有低输入阻抗的RGC(regulated cascode)结构作为输入级。同时,采用电感并联峰化和容性退化技术扩展TIA电路的带宽。当光电二极管电容为250fF时,该电路的-3dB带宽为9.2GHz,跨阻增益为57.6dBΩ,平均等效输入噪声电流谱密度约为16.5pA/(Hz)(1/2)(0~10GHz),电路的群时延为±20ps。在1.8V单电源供电时,功耗为26mV。  相似文献   

11.
12 Gb/s GaAs PHEMT跨阻抗前置放大器   总被引:1,自引:0,他引:1       下载免费PDF全文
采用0.5 μ m GaAs PHEMT工艺研制了一种单电源偏置光接收机跨阻抗前置放大器.放大器-3dB带宽约为9.5GHz;在50MHz~7.5GHz范围内,跨阻增益为43.5±1.5dB Ω ,输入输出回波损耗均小于-10dB;带内噪声系数在4dB~6.5dB之间,由此得到的最小等效输入噪声电流密度约为17.6pA/ Hz ;输入12Gb/s NRI伪随机序列时,放大器输出眼图清晰,眼开良好.  相似文献   

12.
分析各种结构前置放大器性能的基础上,给出了一个应用于2.5 Gbit/s光纤通信系统的,基于CMOS工艺的共栅结构跨阻放大器。为了减小输入等效噪声电流和提高带宽,采用了有源反馈和有源电感代替传统结构中的电阻反馈。测试结果表明,该电路具有61.8 dB的跨阻增益,2.01 GHz的带宽,输入等效噪声电流为9.5 pA/Hz~(1/2),核心电路功耗仅为3.02 mW。  相似文献   

13.
20GHz宽带GaAs PHEMT分布式前置放大器   总被引:3,自引:0,他引:3       下载免费PDF全文
采用0.5μm GaAs PHEMT工艺研制了一种光接收机分布式前置放大器.该放大器-3dB带宽接近20GHz,跨阻增益约46dBΩ;在50MHz~16GHz范围内,输入、输出电压驻波比(VSWR)均小于2;带内噪声系数在3.03~6.5dB之间,平均等效输入噪声电流密度约为14.6pA/ Hz ;在输入10Gb/s非归零(NRZ)伪随机二进制序列(PRBS)信号下,放大器输出眼图清晰,具有12ps的定时抖动和166mV峰峰电压.  相似文献   

14.
采用0.5μm GaAs PHEMT工艺研制了一种单电源共栅电流模跨阻抗前置放大器(TIA).测量得到放大器-3dB带宽为7.5GHz,跨阻增益为45dBΩ;输入输出电压驻波比(VSWR)均小于2;等效输入噪声电流谱密度在14.3~22pA/ Hz之间,平均值为17.2pA/ Hz.在输入10Gb/s非归零(NRZ)伪随机二进制序列(PRBS)信号下,放大器输出眼图清晰,具有14ps的定时抖动和138mV的峰峰电压.  相似文献   

15.
2.5Gb/Scmos光接收机跨阻前置放大器   总被引:6,自引:0,他引:6  
给出了一种利用0.35μm CMOS工艺实现的2.5Gb/s跨阻前置放大器。此跨阻放大器的增益为59 dB*Ω,3dB带宽为2GHz,2GHz处的等效输入电流噪声为0.8×10-22 A2/Hz。在标准的5V电源电压下,功耗为250mW。PCML单端输出信号电压摆幅为200mVp-p。整个芯片面积为1.0mm×1.1mm。  相似文献   

16.
采用0.18 μm BiCMOS工艺设计并实现了一种高增益、低噪声、宽带宽以及大输入动态范围的光接收机跨阻前置放大器.在寄生电容为250 fF的情况下,采用全集成的四级放大电路,合理实现了上述各项参数指标间的折中.测试结果表明:放大器单端跨阻增益为73 dB,-3 dB带宽为7.6 GHz,灵敏度低至-20.44 dBm,功耗为74 mW,最大差分输出电压为200 mV,最大输入饱和光电流峰-峰值为1 mA,等效输入噪声为17.1 pA/√Hz,芯片面积为800 μ.m×950μm.  相似文献   

17.
This paper describes a 10-Gb/s transimpedance amplifier (TIA), fabricated in a 0.1-μm-p-HEMT technology. To improve the optical overload characteristics, an automatic gain control (AGC) circuit is included. The measured results show excellent performance, transimpedance of 63.3 dBΩ (1.46 kΩ), bandwidth of 8.0 GHz, and equivalent input noise current density of 6.5 pA/rtHz. When the bit error rate is 10-9, the minimum sensitivity and the optical overload are -21.2 dBm, +4.3 dBm, respectively, using a 0.8 A/W pin photodiode (PD). The power dissipation is about 0.5 W from a single -5-V supply. The die area is 1.3×1.6 mm2  相似文献   

18.
A new BiCMOS monolithic automatic gain control (AGC) amplifier with wide dynamic range is described. The forward gain path has 120 kΩ transimpedance, 140 MHz bandwidth, input noise current spectral density of 1.17 pA/√Hz and input signal current handling capability of 4 mA. An on-chip peak detector incorporating a 25 pA current source yields AGC hold times in the millisecond range  相似文献   

19.
设计了一款应用在433MHz ASK接收机中的射频前端电路。在考虑了封装以及ESD保护电路的寄生效应的同时,从噪声、匹配、增益和线性度等方面详细讨论了低噪声放大器和下混频器的电路设计。采用0.18μm CMOS工艺,在1.8V的电源电压下射频前端电路消耗电流10.09 mA。主要的测试结果如下:低噪声放大器的噪声系数、增益、输入P1dB压缩点分别为1.35 dB、17.43 dB、-8.90dBm;下混频器的噪声系数、电压增益、输入P1dB压缩点分别为7.57dB、10.35dB、-4.83dBm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号