首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteolytic enzymes produced by Porphyromonas gingivalis are important virulence factors of this periodontopathogen. Two of these enzymes, referred to as arginine-specific cysteine proteinases (gingipains R), are the product of two related genes. Here, we describe the purification of an enzyme translated from the rgpB/rgp-2 gene (gingipain R2, RGP-2) and secreted as a single chain protein of 422 residues. The enzyme occurs in several isoforms differing in pI, molecular mass, mobility in gelatin zymography gels, and affinity to arginine-Sepharose. In comparison to the 95-kDa gingipain R1, a complex of catalytic and hemagglutinin/adhesin domains, RGP-2 showed five times lower proteolytic activity, although its activity on various P1-arginine p-nitroanilide substrates was generally higher. Gingipains R amidolytic activity, but not general proteolytic activity, was stimulated by glycyl-glycine. However, in cases of limited proteolysis, such as the inactivation of alpha-1-antichymotrypsin, glycyl-glycine potentiated inhibitor cleavage. In contrast, alpha-1-proteinase inhibitor was not inactivated by gingipains R and only underwent proteolytic degradation during boiling in reducing SDS-polyacrylamide gel electrophoresis treatment buffer. Similarly, native type I collagen was completely resistant to cleavage by gingipains but readily degraded after denaturation. Together, these data explain much of the controversy regarding gingipains structure and substrate specificity and indicate that these enzymes function as P. gingivalis virulence factors by proteolysis of selected target proteins rather than random degradation of host connective tissue components.  相似文献   

2.
Porphyromonas gingivalis can induce its uptake by host epithelial cells; however, the nature and role of the P. gingivalis molecules involved in this invasion process have yet to be determined. In this study, modulation of secreted P. gingivalis proteins following association with gingival epithelial cells was investigated. Western immunoblot analysis showed that contact with epithelial cells or epithelial cell growth media induces P. gingivalis 33277 to secrete several proteins with molecular masses between 35 and 95 kDa. Secretion of the Arg-gingipain and Lys-gingipain proteases was repressed under these conditions. The contact-induced secreted protein profile was altered in Arg-gingipain-deficient and Lys-gingipain-deficient mutants, indicating a possible role for these proteases in the secretion pathway. The P. gingivalis contact-dependent protein secretion pathway differs to some extent from type III protein secretion pathways in enteric pathogens, as a gene homologous to the invA family genes was not detected in P. gingivalis. The secreted proteins of P. gingivalis may play a role in the interactions of the organism with host cells.  相似文献   

3.
4.
Porphyromonas gingivalis is associated with chronic and severe periodontitis in adults. P. gingivalis and the other periodontal pathogens colonize and interact with gingival epithelial cells, but the genes and molecular mechanisms involved are unknown. To dissect the first steps in these interactions, a P. gingivalis expression library was screened for clones which bound human oral epithelial cells. Insert DNA from the recombinant clones did not contain homology to the P. gingivalis fimA gene, encoding fimbrillin, the subunit protein of fimbriae, but showed various degrees of homology to certain cysteine protease-hemagglutinin genes. The DNA sequence of one insert revealed three putative open reading frames which appeared to be in an operon. The relationship between P. gingivalis attachment to epithelial cells and the activities identified by the screen is discussed.  相似文献   

5.
Nitric oxide which was released in aqueous solutions (> or = 10 microM) of direct NO-donors such as 3-morpholinesydnonimine (SIN-1) and S-nitroso-N-acetyl-penicillamine (SNAP) consumed avidly sulfhydryl groups of N-acetylcysteine > cysteine > glutathione. In case of SIN-1 generation of nitrites run in parallel to disappearance of sulfhydryl groups of N-acetylcysteine and glutathione, however, for a pair of SIN-1 and cysteine the rate of formation of nitrites was much slower than the rate of consumption of sulfhydryl groups. We infer that kinetics of formation and breakdown of S-nitrosothiols varies depending on the type of a thiol which reacts with a NO-donor. Indirect NO-donors such as glyceryl trinitrate (GTN), molsidomine (MSD) or sodium nitroprusside (NaNP) at concentrations < 100 microM did not consume sulfhydryl groups of cysteine unless pretreated with the xanthine/xanthine oxidase system. We suppose that in this last case superoxide anions react with nitric oxide to form peroxynitrites with a higher potency than nitric oxide itself to destroy sulfhydryl groups. We conclude that out of three studied thiols N-acetylcysteine is the best substrate for the formation of S-nitrosothiols, while S-nitrosocysteine is the slowest releaser of nitric oxide. Moreover, unlike SIN-1 and SNAP, NaNP is not a direct NO-donor but behaves rather like GTN. Minute amounts of nitric oxide released either from NaNP or GTN gain from superoxide anions an amplification as SH-scavengers.  相似文献   

6.
7.
The primary purpose of this study was to characterize the major structural features of ceramides recovered from Porphyromonas gingivalis, a suspected periodontal pathogen. Complex lipids extracted from P. gingivalis were treated with N, O-bis(trimethylsilyl)-trifluoroacetamide and analyzed using gas chromatography-mass spectrometry. Mass spectra of lipid derivatives revealed cleavage products consistent with structures of four major ceramides. Two of the major ceramides are proposed to contain long chain bases of either 2-amino-1,3-octadecanediol or 2-amino-1, 3-nonadecanediol in amide linkage to 3-hydroxy isobranched C17:0. The remaining major ceramides are proposed to contain either 2-amino-1,3-octadecanediol or 2-amino-1,3-nonadecanediol in amide linkage to C17:1. Alkaline hydrolysis of P. gingivalis lipids and subsequent formation of suitable derivatives revealed 3-hydroxy isobranched C17:0, C17:1, 2-amino-1,3-octadecanediol, and 2-amino-1, 3-nonadecanediol as hydrolysis products. Therefore, the constitutive fatty acids and long chain bases recovered in alkaline hydrolysis products of P. gingivalis lipids are consistent with the proposed ceramide structures. The next goal of this study was to investigate whether these bacterial ceramides exist in lipid extracts of human teeth and gingival tissue at sites of severe adult periodontitis. Using selected ion monitoring of characteristic ions and retention times for each ceramide described above, lipids from teeth and gingival tissue were shown to contain primarily the ceramides containing C17:1. It is concluded that P. gingivalis synthesizes at least four major ceramides and two of these ceramides are selectively adsorbed to diseased tooth surfaces and may penetrate into diseased gingival tissue.  相似文献   

8.
A right lung cancer case is presented, aged 65 years, obese, submitted to a right lung resection. Stress is laid on the difficult evolution concerning the haemodynamics and particularly the breathing owing to the association of risk factors.  相似文献   

9.
Fimbriae are considered important in the adherence and colonization of Porphyromonas gingivalis in the oral cavity. It has been demonstrated that purified fimbriae bind to whole human saliva adsorbed to hydroxyapatite (HAP) beads, and the binding appears to be mediated by specific protein-protein interactions. Recently, we expressed the recombinant fimbrillin protein (r-Fim) of P. gingivalis corresponding to amino acid residues 10 to 337 of the native fimbrillin (A. Sharma, H.T. Sojar, J.-Y. Lee, and R.J. Genco, Infect. Immun. 61:3570-3573, 1993). We examined the ability of individual salivary components to promote the direct attachment of r-Fim to HAP beads. Purified r-Fim was radiolabeled with 125I and incubated with HAP beads which were coated with saliva or purified individual salivary components. Whole, parotid, and submandibular-sublingual salivas increased the binding of 125I-r-Fim to HAP beads. Submandibular-sublingual saliva was most effective in increasing the binding of 125I-r-Fim to HAP beads (1.8 times greater than that to uncoated HAP beads). The binding of 125I-r-Fim to HAP beads coated with acidic proline-rich protein 1 (PRP1) or statherin was four and two times greater, respectively, than that to uncoated HAP beads. PRP1 and statherin molecules were also found to bind 125I-r-Fim in an overlay assay. The binding of intact P. gingivalis cells to HAP beads coated with PRP1 or statherin was also enhanced, by 5.4 and 4.3 times, respectively, over that to uncoated HAP beads. The interactions of PRP1 and statherin with 125I-r-Fim were not inhibited by the addition of carbohydrates or amino acids. PRP1 and statherin in solution did not show inhibitory activity on 125I-r-Fim binding to HAP beads coated with PRP1 or statherin. These results suggest that P. gingivalis fimbriae bind strongly through protein-protein interactions to acidic proline-rich protein and statherin molecules which coat surfaces.  相似文献   

10.
Periodontitis is a common, progressive disease that eventually affects the majority of the population. The local destruction of periodontitis is believed to result from a bacterial infection of the gingival sulcus, and several clinical studies have provided evidence to implicate Porphyromonas gingivalis. If P. gingivalis is a periodontal pathogen, it would be expected to be present in most subjects with disease and rarely detected in subjects with good periodontal health. However, in most previous studies, P. gingivalis has not been detected in the majority of subjects with disease, and age-matched, periodontally healthy controls were not included for comparison. The purpose of the study reported here was to compare the prevalence of P. gingivalis in a group with periodontitis to that of a group that is periodontally healthy. A comprehensive sampling strategy and a sensitive PCR assay were used to maximize the likelihood of detection. The target sequence for P. gingivalis-specific amplification was the transcribed spacer region within the ribosomal operon. P. gingivalis was detected in only 25% (46 of 181) of the healthy subjects but was detected in 79% (103 of 130) of the periodontitis group (P < 0.0001). The odds ratio for being infected with P. gingivalis was 11.2 times greater in the periodontitis group than in the healthy group (95% confidence interval, 6.5 to 19.2). These data implicate P. gingivalis in the pathogenesis of periodontitis and suggest that P. gingivalis may not be a normal inhabitant of a periodontally healthy dentition.  相似文献   

11.
Porphyromonas gingivalis (P. gingivalis) is considered to be a pathogenic factor in adult or rapidly progressive periodontitis. The purpose of this study was to evaluate the distribution of P. gingivalis in the dentition of adult periodontitis patients using a nonradioactive DNA probe, and to compare the presence of P. gingivalis with clinical parameters. Twelve adult periodontitis patients were examined. Subgingival plaque samples were taken from 4 sites of all the remaining teeth using a paper point. At the same time, probing depth and bleeding on probing (BOP) were also recorded. Plaque samples were investigated using a whole genomic DNA probe from P. gingivalis (ATCC 33277) modified with bisulfite. The detection, percentage and amounts of P. gingivalis present were statistically compared with probing depth and BOP in each patient. P. gingivalis was detected in all patients examined. The detection percentage was 35% of all sample sites. When the probing depth was over 4 mm or BOP was positive, the detection percentage of P. gingivalis significantly increased (P < 0.01). As more P. gingivalis was identified, the percentage of sites with deep probing depth or that were BOP positive increased significantly (P < 0.01). However, P. gingivalis was also detected in clinically healthy sites, and P. gingivalis negative sites with deep probing depth or that were BOP positive existed in the same patient. These results indicate that P. gingivalis play an important role, but is not the only microorganism responsible for adult periodontitis.  相似文献   

12.
Porphyromonas gingivalis W50 (ATCC 53978) possesses the gene for fimbriae; however, the surface-expressed fimbriae are sparse and have not been previously isolated and characterized. We purified fimbriae from strain W50 to homogeneity by ammonium sulfate precipitation and reverse-phase high-performance liquid chromatography [H. T. Sojar, N. Hamada, and R. J. Genco, Protein Expr. Purif. 9(1):49-52, 1997]. Negative staining of purified fimbriae viewed by electron microscopy revealed that the fimbriae were identical in diameter to fimbriae of other P. gingivalis strains, such as 2561, but were shorter in length. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis, the apparent molecular weight of isolated fimbrillin from strain W50 was found to be identical to that of the fimbrillin molecule of strain 2561. Unlike 2561 fimbriae, W50 fimbriae, under reducing condition, exhibited a monomeric structure on SDS-PAGE at room temperature. However, under nonreduced conditions, even at 100 degrees C, no monomer was observed. In immunoblot analysis as well as immunogold labeling of isolated fimbriae, polyclonal antibodies against 2561 fimbriae, as well as antibodies against peptide I (V-V-M-A-N-T-G-A-M-E-V-G-K-T-L-A-E-V-K-Cys) and peptide J (A-L-T-T-E-L-T-A-E-N-Q-E-A-A-G-L-I-M-T-A-E-P-Cys), reacted. However, antifimbrial antibodies against strain 2561 reacted very weakly compared to anti-peptide I and anti-peptide J. Negative staining of whole W50 cells, as well as immunogold electron microscopy with anti-peptide I and anti-peptide J, showed fimbriae shorter in length and very few in number compared to those of strain 2561. Purified fimbriae showed no hemagglutinating activity. Amino acid composition was very similar to that of previously reported fimbriae of the 2561 strain.  相似文献   

13.
Hemagglutinin is a major glycoprotein of Porphyromonas gingivalis vesicles and likely confers the ability to adsorb and penetrate into host tissue cells. To protect this bacterial invasion, murine monoclonal antibody (MAb) Pg-vc, which inhibited the hemagglutinating activity, was prepared by using P. gingivalis vesicles as an antigen. Western blot analysis revealed that when both MAb Pg-vc and anti-HA-Ag2 antibody raised against the P. gingivalis hemagglutinin adhesin (M. Deslauriers and C. Mouton, Infect. Immun. 60:2791-2799, 1992) were allowed to react with protein blots from P. gingivalis vesicles, a superimposable profile was observed. To obtain a recombinant antibody, cDNAs coding for the variable domains of the L and H chains of MAb Pg-vc were cloned by PCR, and a plasmid specifying a single-chain variable fragment (ScFv) was constructed. Following transformation of Escherichia coli cells, a recombinant ScFv protein was successfully expressed. The immunological properties of this protein were identical to those of the parental murine MAb, specifically recognizing the two proteins (43 and 49 kDa) originating from P. gingivalis vesicles. In addition, the ScFv antibody inhibited the P. gingivalis vesicle-associated hemagglutinating activity. The amino acid sequences deduced from nucleotide sequencing experiments confirmed that variable heavy-chain and variable light-chain regions belonged to VH1 and Vkappa12/13 families, respectively. Since the expression system used in this study can readily provide large quantities of single-chain recombinant antibody, it may be a useful in developing a therapeutic agent for passive immunization in humans.  相似文献   

14.
In order to access the role of the Porphyromonas gingivalis Arg-gingipain proteases in the virulence of this organism, a mutant defective in the rgpA gene was constructed in strain 381. This mutant, MT10, displayed only 40% of the Arg-specific cysteine protease activity of the wild-type strain. In addition, MT10, as well as the recently characterized protease mutant G-102, which is defective in the rgpB gene, displayed reduced self-aggregation, hemagglutination, and the ability to bind to immobilized type I collagen compared to levels of the wild-type parent. However, unlike mutant G-102, the rgpA mutant displayed increased binding to epithelial cells relative to that of the parental organism. Mutant MT10 also did not express detectable levels of the FimA protein as assessed by both Western and Northern blotting or fimbriae visible by electron microscopy of the cells. Furthermore, the ability of MT10 to degrade rat tail collagen fibers when it was cultured at 37 degrees C was markedly attenuated compared to that of strain 381. These results suggest that Arg-gingipain A may play a significant role in the pathogenicity of P. gingivalis by altering the colonization and toxic properties of the organism.  相似文献   

15.
Intracrevicular plaque from periodontally-healthy individuals who had refrained from oral hygiene measures for 24 h prior to sampling, and subgingival plaque from diseased sites of patients with chronic periodontitis were screened by ELISA for the presence of Porphyromonas gingivalis and Treponema denticola. The samples were also subjected to the PerioScan test to detect the presence of enzymes capable of degrading N-benzoyl-DL-arginine-2-naphthylamide (BANA). Of the 141 samples from periodontally-healthy sites, 73% contained T. denticola antigens and 78% P. gingivalis antigens, compared to 43% and 59%, respectively, in plaque samples from the 159 diseased sites. A positive reaction in the PerioScan test was obtained in 89% of plaque samples from diseased sites and in 60% of those from healthy sites. The correlation between the results of the two assays was poor in the case of intracrevicular plaque from healthy sites. However, with plaque samples from diseased sites, the results of the PerioScan test showed very strong correlation with those obtained with the ELISA, suggesting that the former may be a useful, rapid means of indicating the presence of T. denticola and P. gingivalis in such plaque samples.  相似文献   

16.
The fimbriae of Porphyromonas gingivalis plays an important role in the pathogenesis of periodontal disease. A structural subunit of the P. gingivalis fimbriae, fimbrillin, has been shown to promote adherence of the bacteria to host surfaces and also induce an immune response. Biologically active domains of fimbrillin responsible for adherence or eliciting immune responses have been determined. In a previous study, we engineered the human oral commensal organism Streptococcus gordonii to express such biologically active domains on the surface of the bacteria as a vaccine delivery system. In this study we report an alternative approach of secreting fimbrillin polypeptide domains into the medium by modification of the surface-expression system described earlier. Such recombinant S. gordonii, in addition to being a source for antigen presentation to trigger a protective immune response, may have the added advantage of directly blocking the fimbriae-mediated adherence of P. gingivalis to the oral cavity following implantation. This approach can also be utilized for secreting other biologically important therapeutic molecules on mucosal surfaces for modulating local microenvironments.  相似文献   

17.
18.
The gram-negative anaerobic bacterium Porphyromonas gingivalis has been strongly associated with the causation of human periodontal diseases. One distinguishing property of these organisms that has been implicated in periodontal destruction is the expression of potent protease activity. Recent biochemical and genetic approaches have clearly demonstrated that at least five distinct proteases are elaborated by these organisms. The utilization of monospecific mutants defective in individual proteases has demonstrated that protease activity is important in virulence but also has suggested the complexity of the functions of the enzymes in the physiology of these microorganisms. This review summarizes current progress in assessing the role of these enzymes in periodontal inflammation and discusses some unresolved issues relevant to the significance of P. gingivalis proteases in virulence.  相似文献   

19.
The aim of the present study was to evaluate the ability of Porphyromonas gingivalis to degrade hyaluronic acid. No hyaluronidase activity was detected using a turbidimetric method, whereas a standard plate assay showed a positive reaction for P. gingivalis. We postulated that the high proteolytic activity of P. gingivalis may account for this observation. A modified plate assay was designed to avoid false-positive reactions caused by proteolytic bacteria. The new assay, based on the formation of a water-insoluble salt between hyaluronic acid and the polyanion cetylpyridinium chloride, indicated that P. gingivalis does not have hyaluronidase activity. By this modified plate method, it was found that among 24 different oral bacterial species tested, Propionibacterium acnes and Prevotella oris were the only species that possess hyaluronidase activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号