首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological, histochemical and functional analysis of the role of basal ganglia in the motor control is presented. The inhibiting effect of basal ganglia on the motor activity, their role in programming the slow and stereotyped movements, and the presentation of emotional and memory centres to the motor mechanisms of behaviour is emphasised.  相似文献   

2.
During the last two decades, evidence has accumulated to demonstrate the existence, in the central nervous system, of an endogenous mechanism that exerts an inhibitory control over different forms of epileptic seizures. The substantia nigra and the superior colliculus have been described as key structures in this control circuit; inhibition of GABAergic neurons of the substantia nigra pars reticulata results in suppression of seizures in various animal models of epilepsy. The role in this control mechanism of the direct GABAergic projection from the striatum to the substantia nigra and of the indirect pathway, from the striatum through the globus pallidus and the subthalamic nucleus, was examined in a genetic model of absence seizures in the rat. In this model, pharmacological manipulations of both the direct and indirect pathways resulted in modulation of absence seizures. Activation of the direct pathway or inhibition of the indirect pathway suppressed absence seizures through disinhibition of neurons in the deep and intermediate layers of the superior colliculus. Dopamine D1 and D2 receptors in the nucleus accumbens, appear to be critical in these suppressive effects. Along with data from the literature, our results suggest that basal ganglia circuits play a major role in the modulation of absence seizures and provide a framework to understand the role of these circuits in the modulation of generalized seizures.  相似文献   

3.
Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAs) may arise when antibodies directed against invading bacteria cross-react with basal ganglia structures, resulting in exacerbations of obsessive-compulsive disorder (OCD) or tic disorders. This is a report of severe worsening of obsessive-compulsive symptoms in an adolescent boy following infection with group A beta-hemolytic streptococci for whom serial magnetic resonance imaging scans of the brain were acquired to assess the relationship between basal ganglia size, symptom severity, and treatment with plasmapheresis. These data provide further support for basal ganglia-mediated dysfunction in OCD and the potential for immunological treatments in PANDAs patients.  相似文献   

4.
5.
In most patients with basal ganglia calcification no disturbance of calcium metabolism is present. We present four patients with basal ganglia calcification. Two suffered from a secondary hypoparathyroidism following a complicated strumectomy years ago, one had an Alport-Syndrome and hypoparathyroidism. Her mother showed basal ganglia calcification and an abortive Alport-Syndrome as well, but no hypoparathyroidism.  相似文献   

6.
Mucin glycoproteins play a key role in the normal function of the airway epithelium. We examined the expression of mucin genes, MUC3, 4, 5AC, 5B, 6, 7, and 8 in human fetal tissues to establish the localization and age of onset of expression of each mucin gene during human development. We detected expression of MUC4, 5AC, 5B, and 7 in the mid-trimester airway epithelium but did not detect expression of MUC3, 6, or 8. MUC4 was expressed in the trachea and large airways in the majority of cells in the airway epithelium. Expression of MUC5AC was only seen in individual goblet cells in the trachea, while MUC5B was expressed in the surface epithelium of the trachea at 13 wk but was largely restricted to submucosal glands by 23 wk of gestation.  相似文献   

7.
Reward information is processed in a limited number of brain structures, including fronto-basal ganglia systems. Dopamine neurons respond phasically to primary rewards and reward-predicting stimuli depending on reward unpredictability but without discriminating between rewards. These responses reflect 'errors' in the prediction of rewards in correspondence to learning theories and thus may constitute teaching signals for appetitive learning. Neurons in the striatum (caudate, putamen, ventral striatum) code reward predictions in a different manner. They are activated during several seconds when animals expect predicted rewards. During learning, these activations occur initially in rewarded and unrewarded trials and become subsequently restricted to rewarded trials. This occurs in parallel with the adaptation of reward expectations by the animals, as inferred from their behavioral reactions. Neurons in orbitofrontal cortex respond differentially to stimuli predicting different liquid rewards, without coding spatial or visual features. Thus, different structures process reward information processed in different ways. Whereas dopamine neurons emit a reward teaching signal without indicating the specific reward, striatal neurons adapt expectation activity to new reward situations, and orbitofrontal neurons process the specific nature of rewards. These reward signals need to cooperate in order for reward information to be used for learning and maintaining approach behavior.  相似文献   

8.
The basal ganglia have been shown to contribute to habit and stimulus-response (S-R) learning. These forms of learning have the property of slow acquisition and, in humans, can occur without conscious awareness. This paper proposes that one aspect of basal ganglia-based learning is the recoding of cortically derived information within the striatum. Modular corticostriatal projection patterns, demonstrated experimentally, are viewed as producing recoded templates suitable for the gradual selection of new input-output relations in cortico-basal ganglia loops. Recordings from striatal projection neurons and interneurons show that activity patterns in the striatum are modified gradually during the course of S-R learning. It is proposed that this recoding within the striatum can chunk the representations of motor and cognitive action sequences so that they can be implemented as performance units. This scheme generalizes Miller's notion of information chunking to action control. The formation and the efficient implementation of action chunks are viewed as being based on predictive signals. It is suggested that information chunking provides a mechanism for the acquisition and the expression of action repertoires that, without such information compression would be biologically unwieldy or difficult to implement. The learning and memory functions of the basal ganglia are thus seen as core features of the basal ganglia's influence on motor and cognitive pattern generators.  相似文献   

9.
Dopaminergic and glutamatergic transmissions have long been known to interact at multiple levels in the basal ganglia to modulate motor and cognitive functions. One important aspect of their interactions is represented by the reciprocal modulation of release. This topic has been the object of interest since the late 70's, particularly in the striatum and in midbrain dopaminergic areas (substantia nigra and ventral tegmental area). Analysis of glutamate-dopamine interactions in the control of each other's release is complicated by the fact that both glutamate and dopamine act on multiple receptor subtypes which can exert different effects. Therefore, glutamatergic modulation of dopamine release has been reviewed by analyzing the effects of glutamatergic selective receptor agonists and antagonists in the striatum (both motor and limbic portions) and in midbrain dopaminergic areas, as revealed by in vitro (slices, cell cultures, synaptosomes) and in vivo (push-pull, microdialysis and voltammetry techniques) experimental approaches. The same approach has been followed for dopaminergic modulation of glutamate release. The facilitatory nature of glutamate modulating both presynaptic and dendritic dopamine release has clearly emerged from in vitro studies. However, evidence is presented that, at least in the striatum and in the nucleus accumbens of awake rats, glutamate-mediated inhibitory effects may also occur. In vitro and in vivo experiments in the striatum and midbrain dopaminergic areas mainly depict dopamine as an inhibitory modulator of glutamate release. However, in vivo studies reporting dopamine D1 receptor mediated facilitatory effects are also considered. Therefore, the general notion that glutamate and dopamine act oppositely to regulate each other's release, is only partly supported by the available data. Conversely, the nature of the interaction between the two neurotransmitters seems to vary depending on the experimental approach, the brain area considered and the subtype of receptor involved.  相似文献   

10.
The basal ganglia comprise several nuclei in the forebrain, diencephalon, and midbrain thought to play a significant role in the control of posture and movement. It is well recognized that people with degenerative diseases of the basal ganglia suffer from rigidly held abnormal body postures, slowing of movement, involuntary movements, or a combination of these a abnormalities. However, it has not been agreed just what the basal ganglia contribute to normal movement. Recent advances in knowledge of the basal ganglia circuitry, activity of basal ganglia neurons during movement, and the effect of basal ganglia lesions have led to a new hypothesis of basal ganglia function. The hypothesis states that the basal ganglia do not generate movements. Instead, when voluntary movement is generated by cerebral cortical and cerebellar mechanisms, the basal ganglia act broadly to inhibit competing motor mechanisms that would otherwise interfere with the desired movement. Simultaneously, inhibition is removed focally from the desired motor mechanisms to allow that movement to proceed. Inability to inhibit competing motor programs results in slow movements, abnormal postures and involuntary muscle activity.  相似文献   

11.
This article reviews the presentation and management of common breast disorders. It focuses on the diagnosis of treatment and management of patients with breast cancer in a multidisciplinary approach.  相似文献   

12.
The basal ganglia have been implicated in a number of important motor functions, in particular in the initiation of motor responses. According to the current model of basal ganglia functions, motor initiation is supposed to be associated with an inhibition of basal ganglia output structures (substantia nigra pars reticulata/entopeduncular nucleus) which, in turn, might be brought about by corresponding striatal activity changes conveyed via direct and indirect intrinsic pathways to the substantia nigra pars reticulata and the entopeduncular nucleus. Rodent studies using neuropharmacological manipulations of basal ganglia transmitter systems by neurotoxins or drugs provide converging evidence that dopamine within the caudate-putamen, but also within extrastriatal basal ganglia nuclei, is involved in motor initiation by modulating the activity of direct and indirect intrinsic pathways. However, the striatal segregation of dopamine D1 and D2 receptors in control of the direct and indirect projection neurons seems not to be maintained throughout the basal ganglia. In dopamine intact animals, striatal glutamate plays a major role in response initiation probably through actions on striatopallidal neurons involving N-methyl-D-aspartate, but not alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors. Striatal adenosine might also contribute to movement initiation by acting on adenosine A2A receptors located on striatopallidal neurons. Analysis of two integral parts of the indirect pathway revealed that inactivation of the subthalamic nucleus was found to facilitate response initiation, while inactivation of the globus pallidus resulted in facilitation as well as inhibition of response initiation indicating a complex contribution of this latter nucleus. Glutamate and gamma-amino-butyric acid (GABA) controlling the activity of the substantia nigra pars reticulata could be involved in control of response initiation in a way predicted by the simplified model of basal ganglia functions. In contrast, the role of the entopeduncular nucleus in response initiation and its control through GABA and glutamate is at variance with this hypothesis, suggesting functional differences of the output structures. Taken together, neurochemical systems of the basal ganglia significantly contribute to intact response initiation by mechanisms which are only partly consistent with predictions of the current functional scheme of the basal ganglia. This suggests that a more complex model is required to account for these disparate findings.  相似文献   

13.
Using H2(15)O 3D Positron Emission Tomography (PET), regional cerebral blood flow (rCBF) was measured in six human subjects under two different conditions: at rest and while performing self-paced horizontal saccadic eye movements in darkness. These two conditions were repeated four times each. First, the comparison between the four saccadic and four resting conditions was investigated in a group and a single subject analysis. Saccades elicited bilateral rCBF increases in the medial part of the superior frontal gyrus (supplementary eye field), precentral gyrus (frontal eye field), superior parietal lobule, anterior medial part of the occipital lobe involving striate and extrastriate cortex (lingual gyrus and cuneus), and in the right inferior parietal lobule. At the subcortical level, activations were found in the left putamen. These results mainly replicate previous PET findings on saccadic control. Second, the interaction between the experimental conditions and their repetition was examined. When activations throughout repetition of the same saccadic task are compared, the supplementary eye fields show a progressive increase of activation. On the contrary, the activation in the cerebellum, left superior parietal lobule and left occipital cortex progressively decreases during the scanning session. Given the existence of such an interaction, the pattern of activations must be interpreted as a function of task repetition. This may be a factor explaining some apparent mismatch between different studies.  相似文献   

14.
15.
16.
A case of germinoma originating in the basal ganglia and thalamus is presented. This tumour most commonly originates during childhood and adolescence, at pineal and suprasellar regions. In the early stages, the diagnosis of germinoma in the basal ganglion and thalamus is difficult because of its rarity and non-specific findings. The computed tomography (CT) and magnetic resonance imaging (MRI) findings though non-diagnostic, are discussed here. A few differential diagnoses had been discussed with radiological abnormality. Open biopsy done in this case proved to be two-cell pattern germinoma. Early detection of the tumour is desirable, since this tumour is highly sensitive to radio and chemotherapy and is potentially curable. Our patient was treated with combined chemotherapy and the response was well and no residual tumour or recurrence was seen on the repeated imaging modality, however his neurological deficits remained unchanged.  相似文献   

17.
OBJECTIVE: Our aim was to compare the outcome of esophageal resection for carcinoma in elderly patients (aged over 70 and over 80 years) with that of younger patients managed within a single specialist thoracic surgery unit. PATIENTS AND METHODS: Between January 1987 and November 1997, 523 patients underwent esophagectomy for carcinoma in the Nottingham City Hospital Thoracic Surgery Unit. The patients were divided into 3 groups by age: group I, under 70 years (n = 337); group II, 70 to 79 years (n = 150), and group III, 80 to 86 years (n = 36). These groups were compared with regard to preoperative medical status, operability and resectability, complications, operative mortality, and longterm survival. RESULTS: Patients in groups II (6.0%) and III (2.8%) had fewer preexisting respiratory problems than patients in group I (12.5%), and the patients in group III had fewer preexisting cardiovascular problems (16.7%) than patients in groups I (25.2%) and II (32.7 %). Although patients in group III were generally less likely to have operable lesions (64.3%), no significant differences in resectability rate were detected among the 3 groups (80.8%, 77.7%, and 80%). Elderly patients (groups II and III) had a higher incidence of overall (34% and 36.1%), respiratory (24.7% and 19.4%), and cardiovascular (7.3% and 11.1%) complications than those aged under 70 years (24.6%, 16.3%, and 2.1%, respectively). However, operative mortality (4.7%, 6.7%, and 5.6%) and 5-year survivals inclusive of operative mortality (25.1%, 21.2%, and 19.8%) were similar among the 3 groups. CONCLUSIONS: Accumulated experience in all aspects of perioperative management may account for a low hospital mortality in elderly patients despite a greater operative risk. The survival benefit is similar to that in the younger age groups, enforcing the view that esophagectomy within specialist thoracic units can be safely offered (in appropriately selected patients) with acceptable long-term survival in all age groups.  相似文献   

18.
The etiology of the selective neuronal death that occurs in Huntington's disease (HD) is unknown. Several lines of evidence implicate the involvement of energetic defects and oxidative damage in the disease process, including a recent study that demonstrated an interaction between huntingtin protein and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Using spectrophotometric assays in postmortem brain tissue, we found evidence of impaired oxidative phosphorylation enzyme activities restricted to the basal ganglia in HD brain, while enzyme activities were unaltered in three regions relatively spared by HD pathology (frontal cortex, parietal cortex, and cerebellum). Citrate synthase-corrected complex II-III activity was markedly reduced in both HD caudate (-29%) and putamen (-67%), and complex IV activity was reduced in HD putamen (-62%). Complex I and GAPDH activities were unaltered in all regions examined. We also measured levels of the oxidative damage product 8-hydroxydeoxyguanosine (OH8dG) in nuclear DNA, and superoxide dismutase (SOD) activity. OH8dG levels were significantly increased in HD caudate. Cytosolic SOD activity was slightly reduced in HD parietal cortex and cerebellum, whereas particulate SOD activity was unaltered in these regions. These results further support a role for metabolic dysfunction and oxidative damage in the pathogenesis of HD.  相似文献   

19.
Single cell activity was recorded from the primate putamen, caudate nucleus, and globus pallidus during a precued reaching movement task. Two monkeys were trained to touch one of several target knobs mounted in front of them after an LED was lighted on the correct target. A precue was presented prior to this target "go cue" by a randomly varied delay interval, giving the animals partial or complete advance information about the target for the movement task. The purpose of this design was to examine neuronal activity in the major structures of the basal ganglia during the preparation phase of limb movements when varying amounts of advance information were provided to the animals. The reaction times were shortest with complete precues, intermediate with partial precues, and longest with precues containing no information, demonstrating that the animals used precue information to prepare partly or completely for the reaching movement before the target go cue was given. Changes in activity were seen in the basal ganglia during the preparatory period in 30% of neurons in putamen, 31% in caudate nucleus, and 27% in globus pallidus. Preparatory changes were stronger and more closely linked to the time of movement initiation in putamen than in caudate nucleus. Although the amount of information contained in the precues had no significant effect on preparatory activity preceding the target go cue, a directional selectivity during this period was observed for a subset of neurons with preparatory changes (15% in putamen, 11% in caudate nucleus, 14% in globus pallidus) when the precue contained information about the upcoming direction of movement. A smaller subset of neurons showed selectivity for the preparation of movement amplitude. A larger number of preparatory changes showed selectivity for the direction or amplitude of movement following the target go cue than in the delay period before the cue. The intensity of preparatory changes in activity in many cases depended on the length of the delay interval preceding the target go cue. Even following the target go cue, the intensity of the preparatory changes in activity continued to be significantly influenced by the length of the preceding delay interval for 11% of changes in putamen, 8% in caudate nucleus, and 18% in globus pallidus. This finding suggests that preparatory activity in the basal ganglia takes part in a process termed motor readiness. Behaviorally, this process was seen as a shortening of reaction time regardless of precue information for trials in which the delay interval was long and the animals showed an increased readiness to move.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
This study describes the organization of the ventral and dorsal pallidostriatal pathway in the monkey. Both retrograde and anterograde tracers were injected into various regions of the ventral and dorsal pallidum as well as into the striatum. The data indicate that the pallidostriatal pathway is an extensive pathway in the monkey. The projections are organized in a topographic manner preserving a general, but not strict medial-to-lateral and ventral-to-dorsal organization. The terminal arrangement of pallidostriatal fibers is widespread. Non-adjacent pallidal regions send fibers to the striatum which overlap considerably, suggesting convergence of terminals from different pallidal regions. The pallidostriatal pathway is found to have a reciprocal but also a large non-reciprocal component to the striatopallidal pathway. On the basis of these data it is concluded that segregation of different corticobasal ganglia-cortical pathways is maintained in the striatopallidal direction as described earlier (Haber et al. [1990] (J. Comp. Neurol. 293:282-298). However, the pallidostriatal projection to a large region of the striatum allows the modulation of several cortico-basal ganglia circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号