首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear and mitochondrial transmission to daughter buds of Saccharomyces cerevisiae depends on Mdm1p, an intermediate filament-like protein localized to numerous punctate structures distributed throughout the yeast cell cytoplasm. These structures disappear and organelle inheritance is disrupted when mdm1 mutant cells are incubated at the restrictive temperature. To characterize further the function of Mdm1p, new mutant mdm1 alleles that confer temperature-sensitive growth and defects in organelle inheritance but produce stable Mdm1p structures were isolated. Microscopic analysis of the new mdm1 mutants revealed three phenotypic classes: Class I mutants showed defects in both mitochondrial and nuclear transmission; Class II alleles displayed defective mitochondrial inheritance but had no effect on nuclear movement; and Class III mutants showed aberrant nuclear inheritance but normal mitochondrial distribution. Class I and II mutants also exhibited altered mitochondrial morphology, possessing primarily small, round mitochondria instead of the extended tubular structures found in wild-type cells. Mutant mdm1 alleles affecting nuclear transmission were of two types: Class Ia and IIIa mutants were deficient for nuclear movement into daughter buds, while Class Ib and IIIb mutants displayed a complete transfer of all nuclear DNA into buds. The mutations defining all three allelic classes mapped to two distinct domains within the Mdm1p protein. Genetic crosses of yeast strains containing different mdm1 alleles revealed complex genetic interactions including intragenic suppression, synthetic phenotypes, and intragenic complementation. These results support a model of Mdm1p function in which a network comprised of multimeric assemblies of the protein mediates two distinct cellular processes.  相似文献   

2.
We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24 degreesC growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36 degreesC on either carbon source. Microscopic observation of cells growing on glucose at 24 degreesC shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho degrees] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.  相似文献   

3.
4.
Dnm1p/Vps1p-like protein (DVLP) is a mammalian member of the dynamin GTPase family, which is classified into subfamilies on the basis of the structural similarity. Mammalian dynamins constitute the dynamin subfamily. DVLP belongs to the Vps1 subfamily, which also includes yeast Vps1p and Dnm1p. Typical structural features that discriminate between members of the Vps1 and dynamin subfamilies are that the former lacks the pleckstrin homology and Pro-rich domains. Dynamin exists as tetramers under physiological salt conditions, whereas under low salt conditions, it can polymerize into spirals that resemble the collar structures seen at the necks of constricted coated pits. In this study, we found that DVLP is also oligomeric, probably tetrameric, under physiological salt conditions and forms sedimentable large aggregates under low salt conditions. The data indicate that neither the pleckstrin homology nor Pro-rich domain is required for the self-assembly. Analyses using the two-hybrid system and co-immunoprecipitation show that the N-terminal region containing the GTPase domain and a domain (DVH1) conserved across members of the dynamin and Vps1 subfamilies, can interact with the C-terminal region containing another conserved domain (DVH2). The data on the interdomain interaction of DVLP is compatible with the previous reports on the interdomain interaction of dynamin. Thus, the self-assembly mechanism of DVLP appears to resemble that of dynamin, suggesting that DVLP may also be involved in the formation of transport vesicles.  相似文献   

5.
Expression of the proapoptotic protein Bax under the control of a GAL10 promoter in Saccharomyces cerevisiae resulted in galactose-inducible cell death. Immunofluorescence studies suggested that Bax is principally associated with mitochondria in yeast cells. Removal of the carboxyl-terminal transmembrane (TM) domain from Bax [creating Bax (deltaTM)] prevented targeting to mitochondrial and completely abolished cytotoxic function in yeast cells, suggesting that membrane targeting is crucial for Bax-mediated lethality. Fusing a TM domain from Mas70p, a yeast mitochondrial outer membrane protein, to Bax (deltaTM) restored targeting to mitochondria and cytotoxic function in yeast cells. Deletion of four well-conserved amino acids (IGDE) from the BH3 domain of Bax ablated its ability to homodimerize and completely abrogated lethality in yeast cells. In contrast, several Bax mutants which retained ability to homodimerize (deltaBH1, deltaBH2, and delta1-58) also retained at least partial lethal function in yeast cells. In coimmunoprecipitation experiments, expression of the wild-type Bax protein in Rat-1 fibroblasts and 293 epithelial cells induced apoptosis, whereas the Bax (deltaIGDE) mutant failed to induce apoptosis and did not associate with endogenous wild-type Bax protein. In contrast to yeast cells, Bax (deltaTM) protein retained cytotoxic function in Rat-1 and 293 cells, was targeted largely to mitochondria, and dimerized with endogenous Bax in mammalian cells. Thus, the dimerization-mediating BH3 domain and targeting to mitochondrial membranes appear to be essential for the cytotoxic function of Bax in both yeast and mammalian cells.  相似文献   

6.
The Saccharomyces cerevisiae myosin-V, Myo2p, has been implicated in the polarized movement of several organelles and is essential for yeast viability. We have shown previously that Myo2p is required for the movement of a portion of the lysosome (vacuole) into the bud and consequently for proper inheritance of this organelle during cell division. Class V myosins have a globular carboxyl terminal tail domain that is proposed to mediate localization of the myosin, possibly through interaction with organelle-specific receptors. Here we describe a myo2 allele whose phenotypes support this hypothesis. vac15-1/myo2-2 has a single mutation in this globular tail domain, causing defects in vacuole movement and inheritance. Although a portion of wild-type Myo2p fractionates with the vacuole, the myo2-2 gene product does not. In addition, the mutant protein does not concentrate at sites of active growth, the predominant location of wild-type Myo2p. Although deletion of the tail domain is lethal, the myo2-2 gene product retains the essential functions of Myo2p. Moreover, myo2-2 does not cause the growth defects and lethal genetic interactions seen in myo2-66, a mutant defective in the actin-binding domain. These observations suggest that the myo2-2 mutation specifically disrupts interactions with selected myosin receptors, namely those on the vacuole membrane and those at sites of polarized growth.  相似文献   

7.
Vaccinia virus encodes a 37-kDa palmitylated protein (p37) that is required for envelopment, translocation, and cell-to-cell spread of virions. We have analyzed the biological significance of the palmitate modification by constructing a recombinant vaccinia virus that expresses a nonpalmitylated p37 and comparing its biological activity to that of the wild-type virus. The mutant virus is inefficient at cell-to-cell spread and does not produce or release enveloped virions, although it produces normal amounts of nonenveloped virions. Furthermore, the mutant virus is not able to nucleate actin to propel itself through and out of the cell, a function requiring the indirect participation of p37. The deficiency in protein function appears to result from a lack of appropriate targeting to the membranes of the trans-Golgi network (TGN) which leaves p37 soluble in the cytoplasm. We conclude that the palmitate moiety is necessary for targeting or anchoring p37 to the TGN membrane, where, along with other vaccinia virus-encoded proteins, p37 is involved in the complex process of virion envelopment and release.  相似文献   

8.
We have explored a role for the adenovirus (Ad5) E1b58kDa/p53 protein complex in adenovirus replication. This was done by using virus mutants containing different defects in the E1b58kDa gene and cell lines that express either a wild-type p53 protein or a mutant p53 protein. We find that infection of wild-type p53-containing cells with wild-type Ad5 causes a shutoff of p53 and alpha-actin protein synthesis by distinct mechanisms, but neither occurs in mutant p53 cells. Our data also indicate that the shutoff is dependent on formation of the p53/E1b complex and may also involve another virus protein, E4ORF6. Following from these observations we asked whether failure to form the complex resulted in impaired adenovirus replication. Our experiments showed that neither wild-type Ad5 nor the E1b mutant dl338 could replicate in cells expressing a mutant p53 protein, but that wild-type adenovirus replicated well in wild-type p53-expressing cells. Collectively, our data suggest that the interaction between p53 and the E1b58kDa protein is necessary for efficient adenovirus replication. This is the first time such a direct link between the complex and virus replication has been demonstrated. These data raise serious questions about the usefulness of E1b-defective viruses in tumor therapy.  相似文献   

9.
This report compares trafficking routes of a plasma membrane protein that was misfolded either during its synthesis or after it had reached the cell surface. A temperature-sensitive mutant form of the yeast alpha-factor pheromone receptor (ste2-3) was found to provide a model substrate for quality control of plasma membrane proteins. We show for the first time that a misfolded membrane protein is recognized at the cell surface and rapidly removed. When the ste2-3 mutant cells were cultured continuously at 34 degrees C, the mutant receptor protein (Ste2-3p) failed to accumulate at the plasma membrane and was degraded with a half-life of 4 min, compared with a half-life of 33 min for wild-type receptor protein (Ste2p). Degradation of both Ste2-3p and Ste2p required the vacuolar proteolytic activities controlled by the PEP4 gene. At 34 degrees C, Ste2-3p comigrated with glycosylated Ste2p on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, indicating that Ste2-3p enters the secretory pathway. Degradation of Ste2-3p did not require delivery to the plasma membrane as the sec1 mutation failed to block rapid turnover. Truncation of the C-terminal cytoplasmic domain of the mutant receptors did not permit accumulation at the plasma membrane; thus, the endocytic signals contained in this domain are unnecessary for intracellular retention. In the pep4 mutant, Ste2-3p accumulated as series of high-molecular-weight species, suggesting a potential role for ubiquitin in the elimination process. When ste2-3 mutant cells were cultured continuously at 22 degrees C, Ste2-3p accumulated in the plasma membrane. When the 22 degrees C culture was shifted to 34 degrees C, Ste2-3p was removed from the plasma membrane and degraded by a PEP4-dependent mechanism with a 24-min half-life; the wild-type Ste2p displayed a 72-min half-life. Thus, structural defects in Ste2-3p synthesized at 34 degrees C are recognized in transit to the plasma membrane, leading to rapid degradation, and Ste2-3p that is preassembled at the plasma membrane is also removed and degraded following a shift to 34 degrees C.  相似文献   

10.
Rho1p is a yeast homolog of mammalian RhoA small GTP-binding protein. Rho1p is localized at the growth sites and required for bud formation. We have recently shown that Bni1p is a potential target of Rho1p and that Bni1p regulates reorganization of the actin cytoskeleton through interactions with profilin, an actin monomer-binding protein. Using the yeast two-hybrid screening system, we cloned a gene encoding a protein that interacted with Bni1p. This protein, Spa2p, was known to be localized at the bud tip and to be implicated in the establishment of cell polarity. The C-terminal 254 amino acid region of Spa2p, Spa2p(1213-1466), directly bound to a 162-amino acid region of Bni1p, Bni1p(826-987). Genetic analyses revealed that both the bni1 and spa2 mutations showed synthetic lethal interactions with mutations in the genes encoding components of the Pkc1p-mitogen-activated protein kinase pathway, in which Pkc1p is another target of Rho1p. Immunofluorescence microscopic analysis showed that Bni1p was localized at the bud tip in wild-type cells. However, in the spa2 mutant, Bni1p was not localized at the bud tip and instead localized diffusely in the cytoplasm. A mutant Bni1p, which lacked the Rho1p-binding region, also failed to be localized at the bud tip. These results indicate that both Rho1p and Spa2p are involved in the localization of Bni1p at the growth sites where Rho1p regulates reorganization of the actin cytoskeleton through Bni1p.  相似文献   

11.
12.
Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast   总被引:1,自引:0,他引:1  
Cdc42p, a Rho-related GTP-binding protein, regulates cytoskeletal polarization and rearrangements in eukaryotic cells, but the effectors mediating this control remain unknown. Through the use of the complete yeast genomic sequence, we have identified two novel Cdc42p targets, Gic1p and Gic2p, which contain consensus Cdc42/Rac interactive-binding (CRIB) domains and bind specifically to Cdc42p-GTP. Gic1p and Gic2p colocalize with Cdc42p as cell polarity is established during the cell cycle and during mating in response to pheromones. Cells deleted for both GIC genes exhibit defects in actin and microtubule polarization similar to those observed in cdc42 mutants. Finally, the interaction of the Gic proteins and Cdc42p is essential, as mutations in the CRIB domain of Gic2p that eliminate Cdc42p binding disrupt Gic2p localization and function. Thus, Gic1p and Gic2p define a novel class of Cdc42p targets that are specifically required for cytoskeletal polarization in vivo.  相似文献   

13.
TOM22 is an essential mitochondrial outer membrane protein required for the import of precursor proteins into the organelles. The amino-terminal 84 amino acids of TOM22 extend into the cytosol and include 19 negatively and 6 positively charged residues. This region of the protein is thought to interact with positively charged presequences on mitochondrial preproteins, presumably via electrostatic interactions. We constructed a series of mutant derivatives of TOM22 in which 2 to 15 of the negatively charged residues in the cytosolic domain were changed to their corresponding amido forms. The mutant constructs were transformed into a sheltered Neurospora crassa heterokaryon bearing a tom22::hygromycin R disruption in one nucleus. All constructs restored viability to the disruption-carrying nucleus and gave rise to homokaryotic strains containing mutant tom22 alleles. Isolated mitochondria from three representative mutant strains, including the mutant carrying 15 neutralized residues (strain 861), imported precursor proteins at efficiencies comparable to those for wild-type organelles. Precursor binding studies with mitochondrial outer membrane vesicles from several of the mutant strains, including strain 861, revealed only slight differences from binding to wild-type vesicles. Deletion mutants lacking portions of the negatively charged region of TOM22 can also restore viability to the disruption-containing nucleus, but mutants lacking the entire region cannot. Taken together, these data suggest that an abundance of negative charges in the cytosolic domain of TOM22 is not essential for the binding or import of mitochondrial precursor proteins; however, other features in the domain are required.  相似文献   

14.
Diploid cells of the yeast Saccharomyces cerevisiae form after the mating of two haploid cells of the opposite mating type. After fusion of the two plasma membranes of the mating cells, a dinucleated cell forms initially in which the two haploid nuclei then rapidly fuse to form a single diploid nucleus. This latter event, called karyogamy, can be divided into two distinct steps: the microtubule-based movement that causes the two nuclei to become closely juxtaposed and the fusion of the nuclear membranes. For the membrane fusion step, one required component, the ER luminal protein Kar2p (BiP), has been identified. For topological reasons, however, it has been unclear how Kar2p could function in this role. Kar2p is localized to the luminal (i.e., noncytoplasmic) face of the ER membrane, yet nuclear fusion must initiate from the cytosolic side of the outer nuclear membrane or the ER membrane with which it is contiguous. There is both genetic and biochemical evidence that Kar2p interacts with Sec63p, an ER membrane protein containing both luminal and cytosolic domains that is involved in protein translocation across the membrane. We have isolated novel sec63 mutant alleles that display severe karyogamy defects. Disruption of the genes encoding other Sec63p-associated proteins (Sec71p and Sec72p) also results in karyogamy defects. A suppressor mutant (sos1-1) partially corrects the translocation defect but does not alleviate the karyogamy defect. sec61 and sec62 mutant alleles that cause similar or more severe protein translocation defects show no karyogamy defects. Taken together, these results suggest a direct role for Sec63p, Sec71p, and Sec72p in nuclear membrane fusion and argue against the alternative interpretation that the karyogamy defects result as an indirect consequence of the impaired membrane translocation of another component(s) required for the process. We propose that an ER/nuclear membrane protein complex composed of Sec63p, Sec71p, and Sec72p plays a central role in mediating nuclear membrane fusion and requires ER luminally associated Kar2p for its function.  相似文献   

15.
The CD4 protein is expressed on a subset of human T lymphocytes that recognize antigen in the context of major histocompatibility complex (MHC) class II molecules. Using Chinese hamster ovary (CHO) cells expressing human CD4, we have previously demonstrated that the CD4 protein can mediate cell adhesion by direct interaction with MHC class II molecules. In T lymphocytes, CD4 can also function as a signaling molecule, presumably through its intracellular association with p56lck, a member of the src family of protein tyrosine kinases. In the present report, we show that p56lck can affect cell adhesion mediated by CD4 and MHC class II molecules. The expression of wild-type p56lck in CHO-CD4 cells augments the binding of MHC class II+ B cells, whereas the expression of a mutant p56lck protein with elevated tyrosine kinase activity results in decreased binding of MHC class II+ B cells. Using site-specific mutants of p56lck, we demonstrate that the both the enzymatic activity of p56lck and its association with CD4 are required for this effect on CD4/MHC class II adhesion. Further, the binding of MHC class II+ B cells induces CD4 at the cell surface to become organized into structures resembling adhesions-type junctions. Both wild-type and mutant forms of p56lck influence CD4-mediated adhesion by regulating the formation of these structures. The wild-type lck protein enhances CD4/MHC class II adhesion by augmenting the formation of CD4-associated adherens junctions whereas the elevated tyrosine kinase activity of the mutant p56lck decreases CD4-mediated cell adhesion by preventing the formation of these structures.  相似文献   

16.
okra (okr), spindle-B (spnB), and spindle-D (spnD) are three members of a group of female sterile loci that produce defects in oocyte and egg morphology, including variable dorsal-ventral defects in the eggshell and embryo, anterior-posterior defects in the follicle cell epithelium and in the oocyte, and abnormalities in oocyte nuclear morphology. Many of these phenotypes reflect defects in grk-Egfr signaling processes, and can be accounted for by a failure to accumulate wild-type levels of Gurken and Fs(1)K10. We have cloned okr and spnB, and show that okr encodes the Drosophila homolog of the yeast DNA-repair protein Rad54, and spnB encodes a Rad51-like protein related to the meiosis-specific DMC1 gene. In functional tests of their role in DNA repair, we find that okr behaves like its yeast homolog in that it is required in both mitotic and meiotic cells. In contrast, spnB and spnD appear to be required only in meiosis. The fact that genes involved in meiotic DNA metabolism have specific effects on oocyte patterning implies that the progression of the meiotic cell cycle is coordinated with the regulation of certain developmental events during oogenesis.  相似文献   

17.
Previous studies have established that the mitochondrial high mobility group (HMG) protein, Abf2p, of Saccharomyces cerevisiae influences the stability of wild-type (rho+) mitochondrial DNA (mtDNA) and plays an important role in mtDNA organization. Here we report new functions for Abf2p in mtDNA transactions. We find that in homozygous deltaabf2 crosses, the pattern of sorting of mtDNA and mitochondrial matrix protein is altered, and mtDNA recombination is suppressed relative to homozygous ABF2 crosses. Although Abf2p is known to be required for the maintenance of mtDNA in rho+ cells growing on rich dextrose medium, we find that it is not required for the maintenance of mtDNA in p cells grown on the same medium. The content of both rho+ and rho- mtDNAs is increased in cells by 50-150% by moderate (two- to threefold) increases in the ABF2 copy number, suggesting that Abf2p plays a role in mtDNA copy control. Overproduction of Abf2p by > or = 10-fold from an ABF2 gene placed under control of the GAL1 promoter, however, leads to a rapid loss of rho+ mtDNA and a quantitative conversion of rho+ cells to petites within two to four generations after a shift of the culture from glucose to galactose medium. Overexpression of Abf2p in rho- cells also leads to a loss of mtDNA, but at a slower rate than was observed for rho+ cells. The mtDNA instability phenotype is related to the DNA-binding properties of Abf2p because a mutant Abf2p that contains mutations in residues of both HMG box domains known to affect DNA binding in vitro, and that binds poorly to mtDNA in vivo, complements deltaabf2 cells only weakly and greatly lessens the effect of overproduction on mtDNA instability. In vivo binding was assessed by colocalization to mtDNA of fusions between mutant or wild-type Abf2p and green fluorescent protein. These findings are discussed in the context of a model relating mtDNA copy number control and stability to mtDNA recombination.  相似文献   

18.
p190 is a GTPase-activating protein (GAP) for the Rho family of GTPases. The GAP domain of p190 is at the C terminus of the protein. At its N terminus, p190 contains a GTP binding domain of unknown significance. We have introduced a mutation (Ser36 --> Asn) into this domain of p190 that decreased its ability to bind guanine nucleotide when expressed as a hemagglutinin (HA)-tagged protein in COS cells. In vitro, both the wild type and S36N mutant HA-p190 proteins showed similar GAP activities toward RhoA, but when expressed in NIH 3T3 fibroblasts only wild type p190 appeared able to function as a RhoGAP. Wild type HA-p190 induced a phenotype of rounded cells with long, beaded extensions similar to that seen when Rho function is disrupted by ADP-ribosylation. HA-p190(S36N), although expressed at a similar level to the wild type protein, had no discernible effect on the cells. The beaded extension phenotype induced by wild type HA-p190 required GAP function. A GAP-defective mutant, p190(R1283A), had no effect on cell morphology. Moreover, the beaded extension phenotype could be suppressed by co-expression of a gain-of-function Rho mutant, RhoA(G14V), or Rac mutant, Rac1(G12V). Activation of the Jun kinase (JNK) via muscarinic receptors was inhibited by wild type HA-p190, but JNK activity was enhanced by the S36N mutant. Co-expression of HA-p190 with a fragment containing only the mutated GTP binding domain partially inhibited the beaded extension phenotype, suggesting that it may sequester a factor required for p190 function. Taken together these data demonstrate that within the cell, the Rho/Rac GAP activity of p190 can be regulated by the N-terminal GTP binding domain.  相似文献   

19.
The essential Sth1p is the protein most closely related to the conserved Snf2p/Swi2p in Saccharomyces cerevisiae. Sth1p purified from yeast has a DNA-stimulated ATPase activity required for its function in vivo. The finding that Sth1p is a component of a multiprotein complex capable of ATP-dependent remodeling of the structure of chromatin (RSC) in vitro, suggests that it provides RSC with ATP hydrolysis activity. Three sth1 temperature-sensitive mutations map to the highly conserved ATPase/helicase domain and have cell cycle and non-cell cycle phenotypes, suggesting multiple essential roles for Sth1p. The Sth1p bromodomain is required for wild-type function; deletion mutants lacking portions of this region are thermosensitive and arrest with highly elongated buds and 2C DNA content, indicating perturbation of a unique function. The pleiotropic growth defects of sth1-ts mutants imply a requirement for Sth1p in a general cellular process that affects several metabolic pathways. Significantly, an sth1-ts allele is synthetically sick or lethal with previously identified mutations in histones and chromatin assembly genes that suppress snf/swi, suggesting that RSC interacts differently with chromatin than Snf/Swi. These results provide a framework for understanding the ATP-dependent RSC function in modeling chromatin and its connection to the cell cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号