首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 199 毫秒
1.
以Fe元素作为主要金属组分,γ-Al2O3为载体,制备负载不同第二金属组分的XO-Fe2O3/γ-Al2O3双金属催化剂(X为La,Ce,Co,Cu),采用XRD、SEM、氮气吸附-脱附等手段对催化剂进行表征;以H2O2为氧化剂,噻吩为模型硫化物,将含噻吩的正辛烷作为模拟汽油,研究非均相类Fenton试剂催化氧化脱硫过程,考察催化剂中金属元素种类、n(H2O2)/n(S)、催化剂用量等对氧化脱除噻吩效果的影响。结果表明:Fe2O3/γ-Al2O3具有一定的催化H2O2氧化脱硫活性,非均相类Fenton试剂可以催化H2O2产生·OH;在Fe2O3/γ-Al2O3中掺杂少量其它金属可以改变其催化活性,其中以加入Cu后的催化剂活性最高,Cu起到了催化剂助剂的作用,催化剂呈现明显的介孔性质;对于30mL噻吩质量分数为526μg/g的模拟汽油,以CuO-Fe2O3/γ-Al2O3为催化剂,在反应温度333K、催化剂加入量0.2g、n(H2O2)/n(S)=7.40、反应时间120min的条件下,噻吩脱除率达到95.3%以上,有效硫质量分数降至9.4μg/g,达到超深度脱硫效果。  相似文献   

2.
以钨酸钠和硝酸铵为原料采用水热法制备WO3微米棒。以WO3微米棒为催化剂,H2O2为氧化剂,对模拟油中的二苯并噻吩(DBT)进行催化氧化脱硫研究,考察不同的反应条件对DBT脱除效果的影响,确定适宜的反应条件。结果表明:H2O2/WO3/十六烷基三甲基溴化铵体系对DBT具有较高的脱除率;对于5 mL DBT质量分数为500 μg/g的模拟油,适宜的反应条件为:催化剂WO3纳米棒的用量0.01 g、n(H2O2)/n(DBT)=8、反应温度70 ℃、反应时间1.5 h、萃取剂N-N-二甲基甲酰胺加入量8 mL、萃取时间5 min,在该条件下DBT的脱除率为100%;催化剂循环使用5次后,DBT的脱除率没有明显下降。  相似文献   

3.
以噻吩溶液为模型化合物,铁酸锌负载磷钨酸为催化剂,考察氧化时间、氧化温度、磷钨酸负载量、催化剂活化温度等工艺条件对脱硫率的影响。研究结果表明:催化剂上磷钨酸的最佳负载量(w)为13%、活化温度为250 ℃;适宜的反应条件为:反应温度40 ℃,反应时间210 min,氧化剂用量n(H2O2):n(S)=5。在上述条件下模型化合物的脱硫率达到90.1%。  相似文献   

4.
采用浸渍法一步合成了WO3/SBA-15催化剂,并通过XRD和BET方法对其进行表征。表征结果显示,WO3均匀分散在SBA-15分子筛表面上,且保持SBA-15分子筛的结构,仍属于介孔材料。以活性炭为吸附剂、H2O2为氧化剂、WO3/SBA-15为催化剂、1-甲基-2-吡咯烷酮(NMP)为萃取剂,对FCC汽油进行吸附-氧化萃取深度脱硫,通过单因素实验考察了工艺条件对脱硫率的影响。实验结果表明,优化的氧化萃取脱硫条件为:氧化反应温度60℃、反应时间75 min、30%(w)H2O20.5 mL、WO3/SBA-15催化剂0.16 g、FCC汽油10 mL;NMP与FCC汽油体积比1.0、萃取时间30 min。在此条件下,脱硫率达81.71%。WO3/SBA-15催化剂再生4次后,催化性能降低。  相似文献   

5.
FCC柴油催化氧化深度脱硫的研究   总被引:17,自引:0,他引:17  
在实验室进行了过氧化氢在甲酸和亚铁离子的催化作用下偶合氧化FCC柴油的深度脱硫试验。试验结果表明过氧酸和Fenton试剂偶合,能有效氧化FCC柴油中的有机硫化合物,经过二甲基甲酰胺萃取后可将FCC柴油中的硫由0.7268%降到114μg/g,脱硫率可达到98.43%。n(HCOOH)/n(H2O2),n(Fe2 )/n(H2O2),n(H2O2)/n(总硫)及温度和时间对氧化脱硫率均有影响,随着n(HCOOH)/n(H2O2)的增加,油回收率下降。  相似文献   

6.
以N-甲基咪唑氟硼酸盐([HMIM]BF4)和苯丙酸(C9H10O2)为原料合成了[HMIM]BF4/xC9H10O2(x=0.5、1、2)型低共熔溶剂(DESs);对其进行FT-IR、1H NMR和TGA表征分析;将[HMIM]BF4/0.5 C9H10O2低共熔溶剂作为萃取剂和催化剂、H2O2作为氧化剂脱除模拟油中的二苯并噻吩(DBT),分别考察了n(C9H10O2)/n([HMIM]BF4)、反应温度、n(H2O2)/n(S)、低共熔溶剂的加入量和不同含硫化合物对脱硫率的影响。结果表明:在模拟油体积为5 mL、n(C9H10O2)/n([HMIM]BF4)=0.5、反应温度为60 ℃、n(H2O2)/n(S)=8、反应180 min、[HMIM]BF4/0.5 C9H10O2的加入量为1.0 mL的最佳反应条件下,[HMIM]BF4/0.5 C9H10O2对DBT、4,6-二甲基二苯并噻吩(4,6-DMDBT)和苯并噻吩(BT)的脱硫率分别达98.4%、93%和89.6%;红外分析表明DBT与DESs之间存在较强的相互作用,可使DBT的结构发生畸变;在5次循环反应后,[HMIM]BF4/0.5 C9H10O2的脱硫率仍高达90.2%,表明其具有较高的稳定性。  相似文献   

7.
以具有Bronsted酸性的吡咯烷酮离子液体N-甲基-2-吡咯烷酮氟硼酸盐([Hnmp]BF,)为萃取剂和催化剂,含30%质量分数H2O2的双氧水为氧化剂,二苯并噻吩(DBT)的正辛烷溶液作为模型油,同时进行萃取脱硫和氧化脱硫,考察了n(H2O2)/n(S)、DBT初始浓度和反应温度对脱硫率的影响.结果表明,[Hnmp]BF4-H2O2体系产生的羟基自由基能将DBT氧化成相应的砜而进入离子液体相,从而脱除了模型油中的S;当n(H2O2)/n(S)=3、反应温度为60℃、模型油与离子液体等体积时,在60 min内可以将油相中S质量浓度为1550 μg/ml的DBT完全氧化脱除;DBT初始浓度越高,S的完全脱除就越困难.离子液体重复再生使用7次后,脱硫率明显降低.  相似文献   

8.
制备了亲水性离子液体1-丁基-3-甲基咪唑四氟硼酸盐([Bmim]BF4)和4种季铵型六聚钨酸盐催化剂,通过FTIR,UV-Vis,TG等方法对它们的结构进行了表征;考察了以H2O2为氧化剂,季铵型六聚钨酸盐催化剂在离子液体[Bmim]BF4中相转移催化氧化模拟油中二苯并噻吩(DBT)的活性。实验结果表明,随H2O2和催化剂用量的增加、反应温度的升高和反应时间的延长,DBT脱除率单调增加;适宜的反应条件为:以季铵型六聚钨酸盐[C18H37(CH3)3N]2W6O19为催化剂,模拟油用量5mL、离子液体[Bmim]BF4用量1 mL、反应温度50℃、反应时间3.0 h、n(催化剂)∶n(DBT)=1∶10、n(H2O2)∶n(DBT)=4;在此条件下,该脱硫体系的DBT脱除率可达99.6%,其脱硫效果好于仅用离子液体萃取脱硫和无离子液体的催化氧化脱硫体系的脱硫效果。  相似文献   

9.
以钛酸四正丁酯为钛源、钨酸钠为钨源、SBA-15为催化剂载体,采用孔道内水解法制备WO3-TiO2/SBA-15样品并用XRD、BET进行表征,并将其应用于模拟柴油的光催化氧化脱硫实验,考察催化剂用量、n(O)/n(S、反应温度、反应时间等对光催化氧化脱硫的影响。结果表明:在催化剂用量为4 g/L、n(O)/n(S)为8、反应温度为50 ℃、反应时间为2 h的条件下,模拟柴油的脱硫率可达87.9%,催化剂重复使用5次后脱硫率仍可达到64.9%。表明WO3-TiO2/SBA-15催化剂具有较好的光催化氧化脱硫性能和再生性能。  相似文献   

10.
制备了以γ-Al2O3为载体的Ni基选择性加氢硫转移催化剂Mo-Ni/γ-Al2O3,并用于催化裂化(FCC)汽油的加氢硫转移反应。对比了预硫化型和氧化型Mo-Ni/γ-Al2O3催化剂的活性和选择性,并考察了无氧焙烧温度、活性组分负载量对预硫化型Mo-Ni/γ-Al2O3催化剂加氢硫转移催化性能的影响。采用模型化合物研究了硫醇在MoNi/γ-Al2O3催化下的反应,考察了烯烃和硫醇对硫转移反应的影响。结果表明,无氧焙烧温度400℃下制备得到的w(NiO)=8.2%、w(MoS2)=5.6%的预硫化型Mo-Ni/γ-Al2O3催化剂具有相对较高的加氢硫转移反应催化活性和选择性;硫醇与烯烃的反应在催化剂表面的加氢活性位上进行,硫醇先加氢脱硫,生成吸附态H2S,吸附态H2S再与吸附的烯烃反应生成大分子硫醇或硫醚,达到硫转移的目的。  相似文献   

11.
Span-60乳化剂用于流化催化裂化柴油氧化脱硫   总被引:3,自引:1,他引:2  
以Span-60为乳化剂、双氧水为氧化剂、固载磷钨酸的半焦为催化剂,对流化催化裂化(FCC)柴油进行氧化脱硫;考察了反应时间、反应温度、Span-60乳化剂用量和双氧水用量对脱硫率的影响。实验结果表明,FCC柴油氧化脱硫的优化反应条件为:反应时间60m in、反应温度60℃、Span-60乳化剂用量(基于FCC柴油的质量分数)0.6%、双氧水用量(基于FCC柴油的质量分数)2%、催化剂用量(基于FCC柴油的质量分数)1.2%。在此条件下对FCC柴油进行氧化脱硫,FCC柴油中的硫含量由1 400μg/g降至84μg/g,脱硫率达94%。气相色谱分析结果显示,氧化脱硫后FCC柴油中的苯并噻吩衍生物、二苯并噻吩及其衍生物基本上被脱除。  相似文献   

12.
催化裂化汽油光化学氧化脱硫   总被引:2,自引:0,他引:2  
赵地顺  李发堂  刘文丽 《石油化工》2006,35(10):963-966
以水为萃取剂、空气中的O2为氧化剂、500W高压汞灯为紫外光光源,研究了催化裂化(FCC)汽油光化学氧化反应的机理和氧化产物,考察了反应条件对FCC汽油脱硫率的影响。实验结果表明,FCC汽油中的极性含硫化合物首先部分溶于水相中,然后在水相中被氧化。在空气通入量为150mL/min、水与FCC汽油的体积比为1.0的条件下,反应5h后FCC汽油脱硫率达40.6%,加入0.45g4A分子筛作为O2的吸附剂后FCC汽油脱硫率提高到70.2%。FCC汽油的光化学氧化反应为一级动力学反应,加入4A分子筛时的反应速率常数为0.217 4h-1,半衰期为3.18h。FCC汽油光化学氧化反应的主要产物为亚砜和砜,并进一步生成CO2、草酸、SO24-等。  相似文献   

13.
以氧气作氧化剂,甲酸作催化剂,N-甲基吡咯烷酮(NMP)作萃取剂,采用催化氧化反应与溶剂萃取相结合的方法对催化裂化柴油进行了氧化萃取脱硫实验。通过单因素实验考察了催化剂用量,催化氧化温度、时间、氧气压力及萃取剂的用量等对催化裂化柴油硫含量的影响。通过实验得出最适宜的脱硫条件为:反应温度80℃;反应时间90min;充氧压力0.6MPa;催化剂体积分数为10%。经催化氧化,柴油硫质量分数可从1694.2μg/g降到190.8μg/g,脱硫率达到88.7%;在剂油比为1.0和室温条件下,用NMP三级萃取,柴油硫质量分数为37.5μg/g,小于50μg/g,达到欧Ⅳ排放标准的要求。  相似文献   

14.
在催化精馏塔中对FCC汽油催化精馏烷基化硫转移工艺进行考察,采用树脂催化剂,常压、连续操作,适宜的进料方式为下进料方式,回流质量比为2.0。2 016 h连续运行试验表明,催化剂性能稳定,塔顶汽油硫含量在30~40 μg/g之间,硫转移率平均值为91.14%。  相似文献   

15.
以氧气为氧化剂,硼酸为催化剂,活性白土为吸附剂,将催化氧化与吸附相结合,对催化裂化汽油进行了氧化吸附脱硫研究。结果表明,在氧气压力为2.0 MPa,氧化温度为80℃,氧化时间为60 min,催化剂用量占原料汽油的质量分数为3%,原料汽油与吸附剂质量比为20的优化条件下,汽油中的硫含量可从571.00μg/g降至68.52μg/g,脱硫率为88.00%,汽油的收率为83.4%。  相似文献   

16.
Abstract

The sulfur compounds in fluid catalytic cracked (FCC) gasoline were removed with a one-step oxidation–extraction method. Tungstophosphoric acid (HPWA), tert-butyl hydroperoxide (TBHP), and ethanol were used as catalyst, oxidant, and solvent, respectively. TBHP has a higher desulfurization degree and oil yield than hydrogen peroxide, and HPWA exhibited higher desulfurization degree and oil yield than the other kinds of acids. The one-step process has a higher desulfurization degree than the two-step process. The optimal operating parameters were obtained as follows: the catalyst amount was 5 wt%, the mole ratio of oxygen in the oxidant to the sulfur in the gasoline (O/S) was 10, the reaction temperature was 60°C, and the reaction time was 2 hr. Under these conditions, the desulfurization degree and yield of oil were both in the range of 85–90%.  相似文献   

17.
通过调变催化剂中V的价态,借助X射线光电子能谱(XPS)分析、小型固定床和中型提升管装置实验,开发了以自制催化剂c为基础、再生斜管部分增加H2还原预处理器的催化裂化(FCC)新工艺。催化剂经H2还原预处理后,其所含V由5价态降为4价、3价,甚至更低价态,在催化反应中可与氧化态硫接触反应,从而降低FCC汽油硫含量。经H2还原预处理的自制催化剂c(V质量分数0.6%)的催化脱硫效果显著,适宜的H2预还原温度为550℃,预还原时间为20 min。采用自制催化剂c,在H2预还原温度650℃、还原时间20 min、H2流量40 L/h、反应温度500℃、再生温度690℃、剂/油质量比6的条件下,新工艺的FCC汽油S质量浓度由880 μg/mL降至515 μg/mL。  相似文献   

18.
利用LH-02型常规加氢脱硫催化剂,在催化蒸馏小试装置上对FCC汽油重馏分进行了加氢脱硫研究。在压力(表压)1.7MPa、床层平均温度286℃、氢油体积比200、体积空速2h-1、回流比3的条件下,FCC汽油重馏分脱硫率达到92.4%,总硫质量分数由1480μg/g降到112μg/g;脱硫后的重馏分油与FCC轻馏分油调合得到的脱硫后FCC汽油,总硫质量分数由1107μg/g降到295μg/g,抗爆指数损失2.0个单位;脱硫后的重馏分油与醚化后的FCC轻馏分油调合得到的脱硫后FCC醚化汽油,总硫质量分数为289μg/g,抗爆指数损失1.0个单位;脱硫后的FCC汽油性质良好,部分性质指标有较大幅度改善;液体收率高达99.6%以上。  相似文献   

19.
催化裂化汽油络合萃取深度脱硫实验研究   总被引:1,自引:0,他引:1  
采用自制络合萃取剂TS-1对中国石油四川石化公司南充炼油厂催化裂化(FCC)重汽油和全馏分汽油进行脱硫,考察了萃取温度、萃取时间、相分离时间、萃取剂用量[m(萃取剂)/m(汽油)]等工艺条件对脱硫效果的影响,还研究了萃取剂对类型硫的选择性和萃取剂的脱硫效果。结果表明:最佳萃取温度为30℃,最佳萃取时间为7 min,最佳相分离时间为15 min;在最佳工艺条件下对硫质量分数为202×10-6的FCC重汽油脱硫,萃取剂用量为0.003,0.019时精制汽油的硫质量分数分别为138×10-6,49×10-6,汽油收率分别为99.6%,99.5%;萃取剂对FCC重汽油和FCC全馏分汽油中硫醇硫的脱除率均为100.0%,对二硫化物硫的脱除率分别为66.7%和80.0%,对硫醚硫的脱除率分别为85.7%和87.5%,对噻吩硫的脱除率分别为42.1%和32.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号