首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
电渗析工艺去除废水中氨氮的初步研究   总被引:1,自引:0,他引:1  
刘嵩  张佳发  姚远 《山西建筑》2008,34(18):189-190
对电渗析工艺去除废水中的氨氮进行了试验性研究,试验结果表明电渗析工艺处理低浓度氨氮废水时,具有较高的去除效率。指出采用电渗析工艺去除废水中的氨氮是可行的,是一项值得期待的、全新的除氨氮技术。  相似文献   

2.
前言随着春季气温回升,原水水温也逐渐上升,原水中动、植物残体加速腐烂,释放出大量的有机物和营养盐(N、P等),给藻类提供了充足的生长繁殖条件,加上原水中大量有机胶体杂质,对传统制水工艺和出厂水水质造成了一定的影响。1.月浦水厂水处理工艺及生产概况汕头月浦水厂是1999建成投产的现代化水厂,水  相似文献   

3.
利用中试滤柱系统,在低温条件下采用滤柱底部逆流充氧措施强化铁锰复合氧化膜滤料去除地表原水中的氨氮和锰,考察了充氧强度、运行参数(氨氮、锰浓度和滤速)等因素的影响,并对充氧前后氧化膜的微观特征(形态、组成、晶体结构)进行了分析。结果表明,在水温为8℃的条件下,当进水氨氮和锰浓度分别为2.0、3.0 mg/L时,逆流充氧后,完全去除锰所需的滤层厚度由80cm减少至60 cm,出水氨氮浓度由0.7 mg/L降至0,且随着充氧强度的增加,去除效率逐渐升高;当充氧强度为0.6 mL/(cm2·min)、滤速为7.0 m/h时,对氨氮和锰的去除效果最佳。此外,微观表征分析结果表明,逆流充氧使滤料表面形态在水力作用下发生了改变,但并未改变铁锰复合氧化膜的成分和晶体结构。因此,逆流充氧可显著提高低温条件下铁锰复合氧化膜滤料对地表原水中氨氮和锰的去除效率。  相似文献   

4.
陈妙兰 《供水技术》2015,9(2):47-49
以南方某水厂为例,探讨了O3-BAC工艺在饮用水处理中的应用。运行结果表明,O3-BAC出水p H值随运行时间的延长而下降,因此影响亚硝化作用及后期投碱量;O3-BAC工艺运行初期对CODMn的去除作用以物理吸附为主,运行后期以生物降解为主,二者均具有较好的去除效果;O3-BAC工艺应对突发性氨氮污染较滞后,但在高氨氮环境下随着运行时间的推移,对氨氮的去除效果较好。  相似文献   

5.
pH值对电渗析工艺去除废水中氨氮的影响分析   总被引:1,自引:1,他引:0  
探讨了电渗析的原理,分析了pH值对电渗析工艺去除废水中氨氮的影响,介绍了试验装置及方法,得出了偏酸性时氨氮去除率下降剧烈,偏碱性时氨氮去除率下降不是很明显,对于主要污染物为氨氮的废水,其去除效果几乎不受pH值影响的结论。  相似文献   

6.
为应对污水处理厂的提标要求,根据东鄱污水处理厂UNITANK工艺的实际运行情况,在分析该工艺特点及其去除氨氮的主要影响因素的基础上,通过优化工艺矩阵、调整污泥浓度和溶解氧浓度以及补充活性污泥等措施,有效提高了UNITANK工艺对氨氮的去除效能,去除率可提高9%~17%.实际运行结果表明,通过优化调控,可使该厂的出水氨氮浓度优于<城镇污水处理厂污染物排放标准>(GB 18918-2002)的一级A标准.  相似文献   

7.
采用超声强化NaCl对天然沸石进行改性,考察了改性沸石对氨氮的吸附去除特性。结果表明,在超声功率为560 W、改性时间为40 min、NaCl浓度为0.8 mol/L的条件下制备的改性沸石对氨氮的去除效果最佳;在氨氮初始浓度为10 mg/L、改性沸石投加量为5 g/L的条件下,吸附40 min后改性沸石对氨氮的去除率可达到86.9%,120 min后达到吸附平衡,此时对氨氮的去除率为91.11%,相比天然沸石提高了86.3%;准二级反应动力学模型可以较好地描述改性沸石的吸附行为,R2=0.991;改性沸石对氨氮的吸附符合Langmuir模型(R2=0.961 2),其最大吸附量可达到12.56 mg/g。  相似文献   

8.
生物接触氧化工艺去除氨氮试验研究   总被引:2,自引:0,他引:2  
韩燕 《山西建筑》2005,31(3):104-105
通过在改变负荷状态、改变一氧池和二氧池进水量、增加三氧池等方式下调节运行参数,探讨了生物接触氧化工艺对氨氮的去除率,使其在技术上的参考标准更具有科学性、合理性和指导性。  相似文献   

9.
应用GC-MS分析方法对全国75处自来水厂原水及出厂水中苯、甲苯、乙苯、二甲苯、苯乙烯等7种苯系物进行了分析。结果表明:除1处原水水样含有苯(浓度为0.000 6 mg/L)外,其余原水和出厂水中苯系物浓度均低于GC-MS检测限。对含有苯的原水水样进行健康风险评价,计算得到其化学致癌物风险值为1.03×10-6,大于美国环保局提出的最大可接受值(10-6)。对机器检测限对应的苯系物浓度进行健康风险评价,得出苯的化学致癌物风险值为6.53×10-7,低于美国环保局规定的可接受水平。所有原水及出厂水中7种苯系物对应的非化学致癌物风险均低于美国环保局提出的可接受水平,表明原水及出厂水均无潜在风险。  相似文献   

10.
以需氧池-间歇曝气池(DAT-IAT)工艺为基础,在其后设置一生物接触氧化反应器,考察了该组合工艺对生活污水中氨氮的去除效果。结果表明,在IAT池以曝气2h、沉淀1h、出水1h的工况运行及生物接触氧化反应器的HRT为3h的条件下,系统对氨氮的平均去除率为81.1%,出水氨氮平均浓度为7.0mg/L,满足《城市污水再生利用城市杂用水水质》(GB/T 18920-2002)的要求。系统对氨氮的去除率随着进水COD浓度的提高而下降,当进水COD为815.3mg/L时,出水氨氮浓度仍可满足GB/T 18920-2002的要求;随着进水氨氮浓度的提高,系统对氨氮的去除率先略有上升后明显下降,为保证出水氨氮浓度达到回用标准,应将进水氨氮浓度控制在50mg/L以下;系统适宜的pH值范围为7~8,pH值过高或过低都会造成系统对氨氮去除率的显著下降。  相似文献   

11.
活性滤池去除微污染水中有机物和氨氮   总被引:13,自引:2,他引:13  
主要阐述了活述滤池对水厂沉淀出水中有机物和氮氮的去除规律,并与水厂砂滤池进行比较。结果表明:①无论活性滤池进水中是否有余氯,它对有机物(以总有机碳TOC表示)、氨氮、亚硝酸盐氯均有去除作用。如果滤前加氯(余氯为0.5mg/L),TOC和氮氮在沿程均有去除,去除率分别为37.5%和82.1%,亚硝酸盐氮在40cm滤层深度以上有所上升,经过余下滤层后得以去除,总去除率为72.8%。如果滤前不加氯,氮氮和亚硝酸盐氮在沿程均有去除,去除率均为90%左右;②砂滤对氨氮的去除不明显(去除率仅为3.1%),TOC去除率为12.5%,而亚硝酸盐氮略有上升。  相似文献   

12.
生物膜电极工艺去除微污染源水中氨氮的研究   总被引:2,自引:0,他引:2  
采用生物膜电极工艺去除微污染源水中的氨氮.在好氧区利用金属阳极电解产氧,在硝化细菌的作用下使氨氮转化为硝酸盐氮或亚硝酸盐氮;在缺氧区利用碳棒作为阴极电解产氢,实现反硝化脱氮.试验结果表明:C/N、电流强度、氨氮浓度、进水流量等对去除总氮均有影响;在流量为3 L/d、无外界供氧、电流强度为19.5 mA、C/N为1的条件下,当进水COD为10 mg/L、氨氮为7 mg/L时,对总氮的去除率可达95.6%,显著改善了水质.  相似文献   

13.
在中试条件下,研究了纯氧曝气和活性无烟煤滤池联用对氨氮的去除效果。结果表明,当待滤水氨氮从0.8~1.0 mg/L突然升至约1.7、2.5、3.0 mg/L时,只要保证硝化反应所需的溶解氧浓度,采用活性无烟煤滤池过滤,在0.5~1 h内即可有效去除氨氮,运行12 h时滤后水氨氮分别降至0.05、0.08、0.21 mg/L;在待滤水氨氮为2.8~3.3 mg/L、DO为13.7~14.0 mg/L的条件下持续运行10 d,24 h之后滤后水中基本无亚硝酸盐氮积累,氨氮稳定在0.04~0.08 mg/L;采用微纳米曝气板进行纯氧曝气,去除2.5~3.0 mg/L氨氮所增加的运行成本为0.017~0.021元/m3,因而适用于水厂应对季节性、突发性氨氮污染。  相似文献   

14.
15.
沸石和活性炭除氨氮、有机物的互补作用   总被引:10,自引:1,他引:10  
研究了沸石与活性炭去除天然有机物和氨氮的效果以及二者在去除氨氮和有机物中的互补作用。结果表明:活性炭对有机物的吸附效果明显优于沸石,沸石则对进水氨氮峰值有很好的削减作用,而活性炭可保证对氨氮的稳定去除。沸石 活性炭工艺可以发挥沸石和活性炭的各自优势,能有效去除微污染源水中的氨氮和有机物。  相似文献   

16.
基于北方某水厂中试基地,采用新炭、2.5~3.5年炭、4.5~5.5年炭等不同炭龄的活性炭滤柱,进行为期1年的连续运行,对比研究炭龄对南水北调水源水中有机物去除效果的影响。结果表明,长期运行稳定的活性炭滤柱,主要通过生物作用去除水中的有机物;2.5~3.5年和4.5~5.5年炭龄滤柱对有机物的去除效果差异较小,但二者对三氯甲烷的去除效果优于生物膜不稳定的新炭滤柱;通过高通量测序解析发现,鞘氨醇单胞菌、DSSF69等是优势功能菌,炭龄长的生物多样性更丰富,生物膜系统更稳定。此外,活性炭滤柱对有机物的去除效果与进水有机物的污染程度相关,当进水溶解性有机物浓度较低时,活性炭滤柱会出现吸附物质逆扩散的现象,所以当水质较好时,活性炭滤池的有机物去除效果会减弱。  相似文献   

17.
针对南方饮用水源水氨氮和有机物浓度季节性上升的特点,开展了活性无烟煤多功能滤池处理高氨氮原水的中试研究。中试处理规模为120 m3/d,滤速为8 m/h,原水氨氮平均浓度为3.1 mg/L。试验结果表明,滤池进水溶解氧浓度不足会导致工艺出水氨氮浓度高于《生活饮用水卫生标准》(GB 5749—2006),同时伴随有亚硝态氮的积累;当采用纯氧曝气提高滤池进水DO至11.9~13.6 mg/L后,活性无烟煤滤池的净水效果大幅提高,出水氨氮<0.1 mg/L,亚硝态氮浓度几乎为零,氨氮全部转化为硝态氮,氨氮有效去除浓度与所需DO浓度的比值平均为1∶4.49。在纯氧曝气条件下,滤池对氨氮的去除率达到97%,对CODMn和UV254的去除率均在44%左右。  相似文献   

18.
混凝和粉末炭去除黄浦江水中DOM的效果   总被引:13,自引:3,他引:13  
研究表明,混凝去降分子量〉4000u的溶解性有机场(DOM)效果较好,而对分子量〈4000u的去除效果较差。粉末活性炭去除低分子量的DOM效果较好,去除大分子量的DOM效果较差。当粉末活性炭投加量较大时,DOM分子量的大小对吸附效果的影响减少。黄浦江水中分子量〉4000u的一部分有机物难以被粉末活性炭吸附去除。  相似文献   

19.
在保持HRT、DO、pH值等参数基本不变的条件下,研究了不同进水COD浓度和C/N值对膜泥法一体化OCO工艺脱氮除碳效果的影响.研究表明,一体化OCO工艺对BOD5、COD均具有很好的去除效果,出水COD和BOD5浓度分别低于60和20 mg/L;随进水COD浓度和C/N值的增加,出水NH3-N浓度逐渐增大,去除率逐渐降低,而对总氮的去除率呈波浪式变化.进水COD为300 mg/L( C/N值为7.5左右)时的除污效果最好,此时系统对BOD5 、COD、NH3-N和TN的去除率分别达到98%、95%、98%和80%.该工艺有较强的降解有机污染物的能力和抗进水COD浓度和C/N值冲击的能力,能够满足处理城市生活污水的需要.  相似文献   

20.
氨氮浓度对活性炭深度处理工艺选择的影响   总被引:3,自引:0,他引:3  
孙光远  孙巍 《中国给水排水》2007,23(17):106-108
以北江佛山段原水为处理对象,比较了活性炭吸附(GAC)和臭氧/生物活性炭(O3/BAC)两种深度处理工艺对氨氮的去除效果,并分析了预氯化对其处理效果的影响.结果表明,GAC和O3/BAC工艺均具有一定的耐氨氮冲击负荷能力.低氨氮浓度下,GAC和O3/BAC工艺对氨氮的去除率接近(约40%),并随着进水氨氮浓度的增大而增加;两者出水中的CHCl3浓度均超标,但O3/BAC的较低;综合考虑处理效果及成本,建议此时优先采用GAC工艺.高氨氮浓度下,O3/BAC工艺去除氨氮的效果显著优于GAC,经消毒后其出水中的CHCl3浓度也低于GAC的,故建议在该种原水水质下优先采用O3/BAC工艺.控制沉淀池出水余氯在合适的范围内,则预氯化对O3/BAC工艺的除污效果无影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号