首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There are concerns with feeding young dairy calves amounts of milk solids approaching 0.9 kg of dry matter (DM) or more because of slumps in average daily gain (ADG) at weaning and low starter intakes. Additionally, programs feeding more than 0.6 kg of DM have not been thoroughly tested for success at different weaning ages. Four milk replacer (MR) programs were compared in trial 1. Program A was 0.44 kg of DM of a 21% crude protein (CP), 21% fat MR powder fed daily for 42 d. Program B was 0.66 kg of DM of a 27% CP, 17% fat MR powder fed daily for 42 d. Program C was 0.66 kg of DM of a 27% CP, 17% fat MR powder daily fed for 28 d. Program D was up to 1.09 kg of DM of a 29% CP, 21% fat MR daily fed for 49 d. Digestibility estimates were made and blood was sampled for serum constituents on d 53 to 56, and performance was measured for 84 d. Three programs feeding a 27% CP, 17% fat MR powder were compared in trial 2 over 56 d. Calves on program A were fed 0.66 kg of DM powder daily and weaned at 28 d. Calves on program B were fed 0.66 kg of DM powder daily and weaned at 42 d. Calves on program C were fed up to 1.09 kg of DM powder daily and weaned at 42 d. Digestibility estimates were made and blood was sampled for serum constituents d 21 to 24, d 36 to 39, and d 53 to 56. In trial 1, calves fed program A had the least overall ADG. Calves fed program D had the greatest ADG from 0 to 56 d, the least ADG from d 56 to 84, the least digestibility estimates, and the least concentrations of serum amylase. At 84 d, there were no differences in body weights of calves fed programs B, C, and D. In trial 2, calves fed program A had the greatest starter intake and greatest concentrations of serum amylase. Calves fed program C had the least estimates of digestibility from d 53 to 56 and the least serum concentrations of amylase. Calves fed up to 1.09 kg/d of 27 to 29% MR powders and weaned at 42 or 49 d had lower starter intakes, concentrations of serum amylase, and digestion of starter postweaning compared with calves fed conventional 21% CP, 21% fat MR powders fed at 0.44 kg/d. Calves fed 0.66 kg/d of a 27% CP, 17% fat MR powder and weaned at 28 or 42 d of age had no reductions in intake or digestion compared with calves fed conventional MR and gained as much total body weight from 0 to 84 d as calves stepped up to 1.09 kg of MR.  相似文献   

2.
The objectives of this study were to investigate the effects of the addition of cottonseed hulls (CSH) to the starter and the supplementation of live yeast product (YST) or mannanoligosaccharide product (MOS) to milk, on growth, intake, rumen development, and health parameters in young calves. Holstein (n = 116) and Jersey (n = 46) bull (n = 74) and heifer (n = 88) calves were assigned randomly within sex at birth to treatments. All calves were fed 3.8 L of colostrum daily for the first 2 d. Holstein calves were fed 3.8 L of whole milk, and Jersey calves were fed 2.8 L of whole milk through weaning at 42 d. Calves continued on trial through 63 d. Six treatments were arranged as a 2 × 3 factorial. Calves received either a corn-soybean meal-based starter (21% crude protein and 6% acid detergent fiber; −CSH) or a blend of 85% corn-soybean meal-based starter and 15% CSH (18% crude protein and 14% acid detergent fiber; +CSH) ad libitum. In addition, calves received whole milk with either no supplement (NONE) or supplemented with 3 g/d of mannanoligosaccharide product (MOS) or 4 g/d of live yeast product (YST) through weaning at 42 d. Twelve Holstein steers [n = 6 (per starter type); n = 4 (per supplement type)] were euthanized for collection and examination of rumen tissue samples. Dry matter intake (DMI) was greater for Holstein calves fed +CSH (0.90 kg/d) than −CSH (0.76 kg/d). Final body weight at 63 d of Holstein calves fed +CSH (75.8 kg) was greater than that of those fed −CSH (71.0 kg). Average daily gain (ADG) was greater for Holstein calves fed +CSH (0.58 kg/d) than −CSH (0.52 kg/d). However, Holstein calves fed −CSH had a greater feed efficiency (FE; 0.71 kg of ADG/kg of DMI) than those fed +CSH (0.65 kg of ADG/kg of DMI). Also, Holstein calves fed +CSH had narrower rumen papillae (0.32 mm) compared with those fed −CSH (0.41 mm). There were no significant effects of CSH on DMI, ADG, or FE in Jersey calves. There were no significant effects of YST or MOS on DMI, ADG, FE, or rumen papillae measures in Holstein calves. Jersey calves fed YST or MOS had greater final body weight at 63 d (51.2 kg and 51.0 kg, respectively) than calves fed NONE (47.5 kg). However, there were no significant effects of YST or MOS on DMI, ADG, or FE in Jersey calves.  相似文献   

3.
The AA requirements of herd-replacement calves less than 5 wk old and fed milk replacers are not clearly defined and have been estimated in a limited number of studies using milk-fed calves ranging from 5 to 20 wk of age. The objective of these 4 studies was to investigate the effect of supplementing milk replacers containing 24 to 28% crude protein (CP; from milk sources) and 17% fat with Lys, Met, and Thr to estimate the optimum requirements for calves less than 5 wk of age. Holstein bull calves (initially 3 and 4 d old, 43 ± 1 kg of body weight, BW) were fed an 18% CP (as-fed) starter ad libitum and weaned at 31 to 32 d of age (28-d studies). Calves were housed in an unheated, curtain-sided nursery. In study 1, 6 milk replacer treatments were fed based on the combination of 3 CP concentrations (24, 26, and 28% CP) each with or without added Lys and Met. In studies 2 and 3, 26% CP and 2.34% Lys milk replacer treatments were fed to test the concentration of Met (0.64, 0.68, and 0.72% Met in study 2 and 0.64, 0.72, and 0.80% Met in study 3). In study 4, 26% CP, 2.34% Lys, and 0.72% Met milk replacer treatments were fed to test the concentration of Thr (1.06, 1.43, and 1.80%). There was a 17% improvement in average daily gain (ADG) in study 1 from adding Lys and Met that was maximized with 2.34% Lys. The ADG response to added Met in studies 2 (linear) and 3 (quadratic) were 13 and 7%, respectively, with a plateau at 0.72% Met. There was no ADG or efficiency response to added Thr in study 4. Formulating 17% fat, whey-based milk replacers fed at 0.68 kg/d to 26% CP, 2.34% Lys, and 0.72% Met appeared optimum based on responses of body weight gain, feed efficiency, and serum concentrations of urea nitrogen, while feeding calves more CP and essential AA did not improved ADG and efficiency. Requirements for calves less than 5 wk old, averaging 48 kg of BW, consuming 204 g of CP/d, and gaining 0.46 kg of BW/d, appeared to be met with 17 g of Lys, 0.31 Met:Lys ratio, 0.54 Met+Cys:Lys ratio, and a Thr:Lys ratio less than 0.60.  相似文献   

4.
In a series of 5 trials, Holstein calves from zero to 12 wk old were housed in pens bedded with straw and fed diets to evaluate physical form of starters containing different processed corn on calf performance. Starters were formulated to have similar ingredient and nutrient compositions. Calves, initially less than 1 wk old, were housed in individual pens through 8 wk and weaned at 6 wk in trial 1 and at 4 wk in trials 2 and 3. In trials 4 and 5, calves initially 8 wk old were housed in group pens (6 calves/pen) from 8 to 12 wk. Trial 1 compared feeding calves a pelleted versus textured starter. Trial 2 compared feeding calves a textured starter versus feeding half meal starter with half textured starter. Trial 3 compared feeding calves textured starters containing whole, steam-flaked, or dry rolled corn. Trial 4 compared feeding calves textured starters containing steam-flaked versus dry rolled corn. Trial 5 compared feeding calves textured starters containing whole or dry rolled corn. Measurements included average daily gain (ADG), starter intake, feed efficiency, hip width change, body condition score change, fecal scores, and medical treatments. Physical form of starter feed did not affect any measurements in trials 1, 3, 4, and 5. In trial 2, calves fed starters manufactured with large amounts of fines had 11% less feed intake and 6% slower ADG than calves fed a textured starter. When starters contained similar ingredient and nutrient contents, manufacturing processes did not affect calf performance unless the diet contained a significant amount of fines, which reduced intake and ADG.  相似文献   

5.
Our objectives were to determine the effect of starter crude protein (CP) content on growth of Holstein calves from birth to 10 wk of age in an enhanced early nutrition program, and to compare the enhanced program to a conventional milk replacer program. Calves (64 female, 25 male) were assigned to 3 treatments in a randomized block design: 1) conventional milk replacer (20% CP, 20% fat) plus conventional starter [19.6% CP, dry matter (DM) basis], 2) enhanced milk replacer (28.5% CP, 15% fat) plus conventional starter, and 3) enhanced milk replacer plus high-CP starter (25.5% CP, DM basis). Calves began treatments (n=29, 31, and 29 for treatments 1 to 3) at 3 d of age. Conventional milk replacer (12.5% solids) was fed at 1.25% of birth body weight (BW) as DM daily in 2 feedings from wk 1 to 5 and at 0.625% of birth BW once daily during wk 6. Enhanced milk replacer (15% solids) was fed at 1.5% of BW as DM during wk 1 and 2% of BW as DM during wk 2 to 5, divided into 2 daily feedings. During wk 6, enhanced milk replacer was fed at 1% of BW as DM once daily. Calves were weaned at d 42. Starter was available for ad libitum intake starting on d 3. Starter intake was greater for calves fed conventional milk replacer. For calves fed enhanced milk replacer, starter intake tended to be greater for calves fed enhanced starter. During the weaning period, enhanced starter promoted greater starter DM intake than the conventional starter. Over the 10-wk study, the average daily gain of BW (0.64, 0.74, and 0.80 kg/d) was greater for calves fed enhanced milk replacer with either starter and, for calves fed enhanced milk replacer, tended to be greater for calves fed high-CP starter. Rates of change in withers height, body length, and heart girth were greater for calves fed enhanced milk replacer but did not differ between starter CP concentrations. The postweaning BW for enhanced milk replacer treatments was greater for calves receiving the enhanced starter at wk 8 (73.7, 81.3, and 85.8 kg) and wk 10 (88.0, 94.9, and 99.9 kg). Starter CP content did not affect height, length, or heart girth within enhanced milk replacer treatments. Regression analysis showed that gain of BW during the first week postweaning (wk 7) increased with greater 3-d mean starter intake in the week before weaning. Starter with 25.5% CP (DM basis) provided modest benefits in starter intake (particularly around weaning) and growth for dairy calves in an enhanced early nutrition program compared with a conventional starter (19.6% CP).  相似文献   

6.
7.
Glutamine, an important fuel and biosynthetic precursor in intestinal epithelial cells, helps maintain intestinal integrity and function when supplemented to the diet of many species. The hypothesis tested here was that glutamine supplementation would overcome the decreased average daily gain (ADG) and altered intestinal morphology caused by milk replacer containing soy protein concentrate (SPC). Holstein calves (9 male and 1 freemartin female per treatment) were assigned to diets of 1) all-milk-protein (from whey proteins) milk replacer, 2) milk replacer with 60% milk protein replacement from SPC, and 3) SPC milk replacer as in diet 2 plus 1% (dry basis) l-glutamine. Milk replacers were reconstituted to 12.5% solids and were fed at 10% of body weight from d 3 to 10 of age, and at 12% of body weight (adjusted weekly) from d 10 through 4 wk of age. No dry feed (starter) was fed, but water was freely available. Glutamine was added at each feeding to reconstituted milk replacer. Five calves from each treatment were slaughtered at the end of wk 4 for measurements of intestinal morphology. The ADG was greater for calves fed the all-milk control than for those fed SPC; glutamine did not improve ADG (0.344, 0.281, and 0.282 kg/d for diets 1 to 3, respectively). Intake of protein was adequate for all groups and did not explain the lower growth for calves fed SPC. Villus height and crypt depth did not differ among treatments in the duodenum. In the jejunum, villus height (713, 506, and 464 μm, for diets 1 to 3, respectively) and crypt depth (300, 209, and 229 μm, respectively) were greater for calves fed all milk protein than for either SPC group. In the ileum, villus height was greater for calves fed all milk than for either soy group (532, 458, and 456 μm), whereas crypt depth tended to be greater (352, 301, and 383 μm for diets 1 to 3, respectively), and the villus to crypt ratio was lower for calves supplemented with glutamine than for those fed SPC alone. Urea N concentration in plasma was greater for calves supplemented with glutamine than for those fed SPC alone, indicating that glutamine was at least partially catabolized. Supplemental l-glutamine did not improve growth or intestinal morphology of calves fed milk replacer containing SPC.  相似文献   

8.
In trials 1A and 1B, the objective was to determine whether crude protein (CP) concentration could be lowered from 27% CP if Lys and Met were held constant. Forty-five calves per trial were fed milk replacer (MR) powders that contained 23, 25, or 27% CP (dry matter basis) from whey protein. Each MR powder contained 17% fat, 2.44% Lys, 0.75% Met, and 1.56% Thr by adding l-Lys, dl-Met, and l-Thr, and were fed at 0.681 kg/d. In trial 2, the objective was to estimate an optimal CP-to-energy ratio for 2 different amounts of MR fed. Ninety-six calves were fed 1 of 8 MR powders (dry matter basis): 1) 23% CP fed at 0.545 kg/d, 2) 25% CP fed at 0.545 kg/d, 3) 27% CP fed at 0.545 kg/d, 4) 29% CP fed at 0.545 kg/d, 5) 23% CP fed at 0.654 kg/d, 6) 25% CP fed at 0.654 kg/d, 7) 27% CP fed at 0.654 kg/d, and 8) 29% CP fed at 0.654 kg/d. In each MR, l-Lys and dl-Met were added to achieve a Lys:CP ratio of 0.09 and a Met:Lys ratio of 0.31. Holstein calves initially 2 to 3 d old and 43 ± 1 kg of body weight (BW) from 1 farm were fed MR until weaning at 28 d and were monitored for a total of 56 d. Calves were fed an 18% CP starter and water free choice from d 1 and were housed in individual pens bedded with straw in a naturally ventilated nursery with no added heat. Trials 1A and 1B were analyzed individually as completely randomized designs with repeated measures in a mixed model. Trial 2 was analyzed as a completely randomized block design with a factorial arrangement of 2 rates and 4 CP concentrations with repeated measures in a mixed model. In trials 1A and 1B, preweaning average daily gain (ADG) and feed efficiency declined as CP declined. Postweaning performance did not differ among treatments. In trial 2, preweaning ADG was greater and starter intake was lower at the high MR compared with the low MR feeding rate. Pre- and postweaning and overall ADG increased quadratically as CP increased. Preweaning MR rate interacted with CP; thus, at the low MR rate, providing 3.26 Mcal of metabolizable energy (ME)/d (0.0656 Mcal/kg of BW daily), 51.5 g of CP/Mcal of ME was the optimal ratio in the MR (25% CP, 17% fat, 2.26% Lys, and 0.68% Met) to maximize ADG. At the high ME intake, providing 3.71 Mcal/d (0.0743 Mcal/kg of BW daily), 55.0 g of CP/Mcal of ME was the optimal ratio in the MR (27% CP, 17% fat, 2.44% Lys, 0.75% Met) to maximize ADG.  相似文献   

9.
Four trials were conducted to compare the concentrations of cottonseed hulls (CSH) and chopped hay in textured starters on calf body weight gain, intake, and efficiency. Holstein bull calves (initially 3 and 4 d old in studies 1, 2, and 3, and 59 to 60 d old in study 4) were fed ad libitum starters (geometric mean particle size of approximately 2,000 22mim; equal at 18% crude protein as-fed; digestible energy concentration declined with increasing roughage). All calves were weaned at 31 to 32 d of age. Calves were housed in individual pens bedded with straw within an unheated, curtain-sided nursery for d 0 to 56 and then grouped in pens of 6 calves for d 56 to 84. Study 1 compared textured starters containing A) 0% or B) 5% CSH for the first 56 d. On d 56 (through d 84), calves fed diet A were switched to diet C, which contained 0% CSH and 5% chopped hay; calves fed diet B were switched to diet D, which contained 5% CSH and 5% hay. Study 2 compared textured starters fed from 0 to 84 d that contained A) 0% CSH and 0% chopped hay, B) 5% CSH, C) 10% CSH, or D) 5% chopped hay. Study 3 compared textured starters fed from 0 to 56 d that contained A) 0%, B) 2.5%, and C) 5% chopped hay. Study 4 compared textured starters fed from d 56 to 84 that contained A) 5% and B) 15% chopped hay. In study 1, calves fed the diet with 5% CSH consumed less starter and were less efficient from 28 to 56 d than calves fed 0% CSH. Calves fed the diet with 0% CSH tended to have a greater average daily gain (ADG) and empty body weight ADG (EBWADG) from 28 to 84 d than calves fed the starter with 5% CSH. In study 2, EBWADG declined linearly from 0 to 28 d, and both ADG and EBWADG decreased from 28 to 56 d as CSH percentage increased in the starter. Both ADG and EBWADG responded quadratically to CSH percentage in the starter from 56 to 84 d, with calves fed the starter containing 10% CSH having the slowest ADG and EBWADG. Calves between 56 and 84 d that were fed starters with 5% roughage appeared more efficient than calves fed starters with 0 or 10% roughage. In study 3, ADG, EBWADG, starter intake, and efficiency declined linearly as hay percentage increased in the starter from 28 to 56 d. In study 4, ADG, EBWADG, and starter intake were less for calves fed starters with 15 vs. 5% hay. In conclusion, adding low-energy fibrous feeds to starters with adequate coarseness (approximately 2,000 μm) reduced ADG in weaned calves less than 3 mo old bedded on straw.  相似文献   

10.
The objective was to determine relationships between protein and energy consumed from milk replacer and starter and calf growth and first-lactation production of Holstein heifer calves. Milk replacer and starter protein intake and metabolizable energy (ME) intake data were collected from 4,534 Holstein heifer calves for growth and 3,627 Holstein cows for production from birth year of 2004 through 2014. Calves from 3 commercial dairy farms were assigned to 45 different calf research trials at the University of Minnesota Southern Research and Outreach Center, Waseca, Minnesota, from 3 to 195 d of life. Calves were moved to heifer growers at 6 mo of age, and calves were returned to their farm of birth a few weeks before calving. Most calves (85%) were fed a 20% crude protein and 20% fat milk replacer at a rate of 0.57 kg/calf daily. Metabolizable energy and protein consumed from milk replacer and starter were calculated for each individual calf for 6 and 8 wk of age. Mixed model analyses were conducted to determine the effect of protein and energy consumed from both milk replacer and starter on calf growth and first-lactation 305-d production of milk, fat, and protein, adjusting for herd, season of birth, year, average daily gain (ADG), and calf trial. Calves with ADG >0.80 kg/d consumed more combined protein and ME than calves with lower ADG. Protein and ME intake from calf starter affected growth more than protein and ME intake from milk replacer because most calves were fed the same fixed amount of milk replacer. Calves born during the fall and winter had greater combined protein and ME intake than calves born during the spring and summer. Milk replacer protein and ME intake did not have a relationship with first-lactation 305-d milk, fat, and protein production. However, starter protein and ME intake during the first 6 and 8 wk of age had a significant positive relationship with first-lactation 305-d milk, fat, and protein production. Consequently, combined protein and combined ME intake had a positive effect on 305-d milk, fat, and protein production. Variance in protein and ME intake was high, suggesting that additional factors affect calf growth during the first 8 wk of life and milk production in first lactation.  相似文献   

11.
The objective of this study was to evaluate the effect of lactoferrin addition to milk replacer varying in crude protein (CP) on dry matter intake, growth, and days medicated. Thirty-four Holstein heifer calves were assigned to 4 treatments in a 2 × 2 factorial arrangement of treatments in a randomized complete block design. Treatments were as follows: 562 g daily of a nonmedicated conventional milk replacer (20% CP:20% fat) feeding regimen with or without 1 g of supplemental bovine lactoferrin (n = 9 for both treatments) or a nonmedicated intensified milk replacer feeding regimen (28% CP:20% fat) fed on a metabolizable energy basis (0.2 Mcal/kg BW0.75) from d 2 to 9, and at 0.27 Mcal/kg BW0.75 from d 10 to 42 with or without 1g supplemental bovine lactoferrin (n = 8 for both treatments). Calves were fed pelleted starter (25% CP) in 227.5-g increments beginning on d 2 and had free access to water. Calves remained on the study for 14 d postweaning. Dry matter intake was determined daily. Growth measurements were taken weekly. Blood samples were taken twice weekly for determination of blood urea N. On d 10 of life, calves were subjected to a xylose challenge. Calves on conventional treatments ate more starter preweaning, during weaning, and postweaning. Preweaning, intensively fed calves had higher dry matter intakes. Weights of intensified-fed calves were greater at weaning. Intensified milk replacer-fed calves had greater average daily gain preweaning and overall and higher gain:feed ratios preweaning, but conventionally fed calves had higher gain:feed ratios during weaning. Intensified milk replacer-fed calves had greater hip heights during weaning and postweaning and greater heart girths preweaning, weaning, and postweaning. Days medicated were greater preweaning and overall for intensified-fed calves. There were no differences among treatments for xylose absorption. Calves on conventional treatments had increased blood urea nitrogen concentrations preweaning. There were no effects of lactoferrin on any experimental variable. Intensified milk replacer-fed calves consumed less starter but had higher average daily gains overall and larger frames and greater BW than conventionally fed calves. An intensified milk replacer feeding regimen promotes faster growth during the preweaning period when compared with calves fed conventional treatments, but supplemental bovine lactoferrin was not beneficial under these experimental conditions.  相似文献   

12.
Forty-four Holstein calves were fed a direct-fed microbial (DFM) and 1 of 2 milk replacers to evaluate calf performance and growth. Treatments were (1) a control milk replacer [22:20; 22% crude protein (CP) and 20% fat], (2) an accelerated milk replacer (27:10; 27% CP and 10% fat), (3) the control milk replacer with added DFM (22:20+D), and (4) the accelerated milk replacer with added DFM (27:10+D). Dry matter intake, rectal temperatures, respiration scores and rates, and fecal scores were collected daily. Body weight, hip and withers height, heart girth, blood, and rumen fluid samples were collected weekly. Effects of treatment, sex, week, and their interactions were analyzed. Calves fed an accelerated milk replacer, regardless of DFM supplementation, consumed more CP and metabolizable energy in the milk replacer. No treatment differences were found for starter intake or intake of neutral detergent fiber or acid detergent fiber in the starter. Calves fed the accelerated milk replacer had greater preweaning and weaning body weight compared with calves fed the control milk replacer. Average daily gain was greater during the preweaning period for calves fed the accelerated milk replacer, but the same pattern did not hold true during the postweaning period. Feed efficiency did not differ among treatments. Hip height tended to be and withers height and heart girth were greater at weaning for calves fed the accelerated milk replacer compared with calves fed the control milk replacer. Fecal scores were greatest in calves fed DFM. Overall acetate, propionate, butyrate, and n-valerate concentrations were lower in calves fed the accelerated milk replacer, but DFM did not have an effect. Rumen pH was not different. Blood metabolites were unaffected by DFM supplementation, but calves fed the accelerated milk replacer had increased partial pressure of CO2, bicarbonate, and total bicarbonate in the blood. Direct-fed microbial supplementation did not appear to benefit the calf in this trial  相似文献   

13.
The hypothesis was that calves fed high-fat milk replacers (MR) would have reduced starter intake, digestibility, and average daily gain (ADG). Forty-eight Holstein calves (initially 42.4 ± 1.5 kg of body weight, 2 to 3 d of age; 12 calves/treatment) were fed 0.66 kg dry matter (DM) of MR per calf daily that contained 14, 17, 20, or 23% fat. This MR had crude protein (CP) to metabolizable energy (ME) ratios ranging from 51.6 to 56.7 g of CP/Mcal of ME, which were above and below a previously determined optimum. Calves were weaned at 28 d; postweaning measurements were continued to d 56. A 20% CP starter and water were fed ad libitum all 56 d of the trial. Measurements of digestion were made using chromic oxide as a marker in the MR and starter from fecal samples collected on d 19 to 23 from 4 calves/treatment. Selected serum constituents were measured on d 21. Calves were housed individually in pens bedded with straw within a naturally ventilated barn with no added heat. The average barn temperature was 2°C. Data were analyzed as a completely randomized design using polynomial contrasts to separate differences in the means. Preweaning apparent digestibility of DM, organic matter, fat, nonfiber carbohydrates, Ca, and P and serum amylase concentration were linearly reduced as fat increased from 14 to 23%. Preweaning starter intake responded quadratically to fat, being lowest at 14 and 23% fat. A reduction in digestibility and starter intake contributed to less ADG at the higher fat concentrations in the MR. A 27% CP, 17% fat MR with 55 g of CP/Mcal of ME maximized preweaning ADG when fat concentration was varied to obtain various CP to ME ratios in the MR. Additionally, a 27% CP, 20% fat MR with 53 g of CP/Mcal of ME supported overall ADG similar to calves fed the 17% fat MR but preweaning digestion measurements and serum amylase concentrations were less than in calves fed the 17% fat MR.  相似文献   

14.
《Journal of dairy science》2022,105(2):1115-1130
The objective of this study was to investigate the effects of milk allowances equal to 526 g/d as moderate (MOD) versus 790 g/d of milk dry matter as high (HI), and starter diets containing 18% or 23% crude protein (CP), on growth performance, blood metabolites, and purine derivative (PD) excretion in the urine of dairy calves. A total of 52 female Holstein dairy calves (40.8 kg of body weight) were randomly assigned to the experimental diets. The treatments were (1) moderate milk and 18% CP starter diet (MOD-18CP); (2) MOD and 23% CP starter diet (MOD-23CP); (3) high milk and 18% CP starter diet (HI-18CP); and (4) HI and 23% CP starter diet (HI-23CP). Calves had free access to a starter feed and water and were weaned on d 53 but remained in the study until d 73. Urine samples were collected during the preweaning period (for 6 consecutive days between d 35 and 40) and postweaning period (for 6 consecutive days between d 65 and 70) to investigate urinary excretion of PD. Starter feed intake, β-hydroxybutyrate (BHB), and blood urea concentrations were reduced; however, average daily gain (ADG) and blood glucose levels increased in calves fed HI before weaning compared with MOD. During the preweaning period, high milk feeding increased total urinary PD excretion but decreased it after weaning. The 23CP diet resulted in higher feed intake and ADG before weaning and higher excretion of allantoin and total excretion of PD compared with the 18CP diet. The HI-23CP treatment resulted in the greatest withers and hip heights at weaning and final measurement, as well as the highest preweaning blood insulin concentrations. In terms of rumen development, MOD-23CP showed the greatest benefits based on starter intake, blood BHB concentration, and urinary excretion of PD. Based on the higher urinary excretion of PD found in HI-fed calves before weaning, it is possible that milk feeding overestimates estimated microbial yield. The results suggest that feeding starters with a higher proportion of CP may help maintain a more balanced ratio of CP to ME during high milk feeding, to avoid protein deficiency due to low starter intake. When calves are fed a high milk allowance, urine excretion of PD may be misinterpreted as a measure of estimated microbial growth and rumen development; this should be considered during calculations of estimated microbial yield in milk-fed calves.  相似文献   

15.
One hundred six female Holstein calves [body weight (BW) = 41.5 ± 0.37 kg and 11.2 ± 0.3 d old] were used to evaluate the effects of physical form of a starter on animal performance and starter intake. Calves were randomly allocated to 2 treatments consisting of either a multiparticle or a pelleted starter. Both starters had exactly the same ingredient and nutrient composition but differed in their physical form. Calves received 4 L/d of the same milk replacer at a 150 g/kg dilution rate in 2 offers of 2 L each until they consumed an average of 300 g/d of starter (as fed) for 2 consecutive days; then the dilution rate was decreased to 120 g/kg until the age of 49 d when milk replacer was limited to 1 daily dose of 2 L until 57 d of age. Calves were kept in individual hutches for at least 1 wk after weaning. Body weight was measured at the beginning of the study and at 49 and 64 d of age. The median perimeters for the multiparticle and pelleted starters were 0.61 ± 0.016 and 2.71 ± 0.082 cm, respectively. Overall starter consumption was greater in calves receiving the multiparticle starter (944.8 ± 30.01 g/d) than in those receiving the pelleted starter (863.9 ± 32.04 g/d). There were no differences in the total milk replacer intake between the 2 treatments. Calf BW when leaving the individual hutches at the end of the study was similar between both treatments. Consequently, feed conversion efficiency was greater in calves consuming the pelleted than the multiparticle starter up to 64 d of age, mainly due to the greater conversion efficiency obtained with the pelleted than with the multiparticle starter after the preweaning period. It is concluded that pelleted starters may result in lower dry feed consumption compared with multiparticle starters, but because final BW was similar in both treatments, feed efficiency of calves consuming pelleted starters may be greater than that of calves consuming multiparticle starters. Therefore, when feeding a starter with similar nutrient composition to the one used in this study, there seems to be an economic advantage associated with feeding the starter in a pelleted form compared with a multiparticle form.  相似文献   

16.
Corn, oats, molasses, and soyhulls are commonly used carbohydrate sources in calf starters. A total of 180 calves were used in 4 studies to compare the use of these ingredients in calf starters. Study 1 compared textured starters with different amounts of molasses or sucrose. The control starter contained 5% molasses (A). The test starters contained greater concentrations of dietary sugar than starter A as either 10% molasses (B) or 5% molasses plus 1.5% granular sucrose (C). Starters B and C were equal in dietary sugar. Study 2 evaluated textured starters containing 0 or 25% whole oats for calves up to approximately 12 wk old. Study 3 evaluated pelleted starters containing 0 or 62.75% soyhulls for calves up to approximately 8 wk old. Study 4 evaluated textured starters containing 0, 14, 28, and 42% soyhulls for calves between approximately 8 and 12 wk old. Calves were housed in individual pens in an unheated nursery with curtain sides through 8 wk and then in group pens of 6 calves/pen from 8 to 12 wk. Calves were bedded with straw. In study 1, calves fed the starters with extra molasses or sucrose had an average of 9% slower average daily gain (ADG) and greater average fecal scores from 42 to 56 d and 9% slower ADG from 0 to 56 d than calves fed the textured starter with low molasses. In study 2, ADG and feed efficiency (kg of feed/kg of gain) were 22 and 20% less, respectively, in calves fed the starter without oats from 0 to 28 d, but there were no differences thereafter. In study 3, calves fed starters with soyhulls had a 10% slower ADG and 8% lower efficiency of gain from 28 to 56 d than calves fed the starters without soyhulls. In study 4, ADG declined linearly as soyhulls increased in the starter. The change in ADG was 14% from 0 to 42% soyhulls. Replacing corn in a starter with molasses, sucrose, or soyhulls reduced postweaning ADG and increased the cost of ADG. Whole oats were an acceptable substitute for corn.  相似文献   

17.
The objective of this study was to evaluate the effect of feeding calf starter on rumen pH of dairy calves during weaning transition. Twenty Holstein bull calves were paired into 10 blocks by starting date of the study and body weight, and fed either milk replacer and hay (MR) or MR, hay, and a commercial texturized calf starter (MR+S) in a randomized complete block design. All calves were fed 750 g/d of milk replacer as the basal diet. Calves on MR+S treatment were also fed a calf starter ad libitum to maintain similar energy intake between calves within blocks, and MR calves were fed additional milk replacer that was equivalent to energy from calf starter intake. When MR+S calves consumed a calf starter at 680 g/d for 3 consecutive d, rumen pH of a MR+S calf and his MR counterpart was measured continuously for 3 d using a small ruminant rumen pH measurement system. Treatment did not affect minimum pH, mean pH, maximum pH, standard deviation of mean pH, and duration or area under pH 5.8, indicating that calf starter consumption did not appear to affect rumen pH. However, hay intake was negatively correlated to area under pH 5.8, with a breakpoint at 0.080 kg/d intake, suggesting hay intake might play an important role in mitigating ruminal acidosis in dairy calves during weaning transition.  相似文献   

18.
There is limited information on the effects and requirements of specific fatty acids for dairy calves. The starter diet based on corn and soybean meal, which is typical in the United States, is low in C18:3, and the ratio of C18:2 to C18:3 is quite high relative to recommendations for human infants. Additionally, other functional fatty acids (C20:4, C20:5, C22:6) elongated from C18:2 and C18:3 have proven benefits in monogastric species. Thus, the effect of adding Ca salts of flax oil (high in C18:3) or fish oil (high in C20:4, C20:5, C22:6) to the starter diet of calves less than 3 mo old was investigated. In trial 1, 48 Holstein bull calves [43.2 ± 1.4 kg of body weight (BW); 12/treatment] that were 2 to 3 d of age were fed 1 of 4 starter treatments containing A) no flax or fish oil (control), B) 0.125% Ca salt of flax oil, C) 0.250% Ca salt of flax oil, or D) 0.250% Ca salt of fish oil. Starters and water were fed free-choice to calves. During the first 56 d, calves were individually penned. From arrival until d 28, calves were fed a 26% crude protein, 17% fat milk replacer. From 56 to 84 d, calves were penned in groups of 6 and maintained on their same starter blended with 5% chopped grass hay. Trial 2 used 96 Holstein steer calves (66.3 ± 3.11 kg of BW; 24/treatment) that were 59 to 60 d old in a 28-d trial. These calves had been managed for their first 56 d in the same way as the calves from trial 1 before starting trial 2. Trial 2 evaluated increasing concentrations of Ca salt of flax oil within a starter blended with 5% chopped grass hay and fed with water free-choice. The 4 treatments were A) 0%, B) 0.083%, C) 0.167%, and D) 0.250% Ca salt of flax oil. In trial 1, there were no differences among calves fed the control diet and calves fed the diet supplemented with flax oil. In trial 1, average daily gain (ADG) increased linearly as flax oil increased in the starter from d 0 to 56 and from d 56 to 84, and hip width change increased linearly as flax oil increased in the starter. Serum urea nitrogen and serum glucose concentrations decreased as flax oil increased in the diet. In trial 2, ADG and feed efficiency increased linearly as flax oil increased in the starter. Serum alkaline phosphatase concentrations increased as flax oil increased in the diet. Supplementing a Ca salt of fish oil had no effect on any variables measured. Supplementing C18:3 (linolenic acid) as a Ca salt of flax oil to the corn and soybean meal-based diet of dairy calves less than 3 mo old resulted in increased ADG and feed efficiency.  相似文献   

19.
The objective of this study was to determine if increasing the energy and protein intake of heifer calves would affect growth rates, age at puberty, age at calving, and first lactation milk yield. A second objective was to perform an economic analysis of this feeding program using feed costs, number of nonproductive days, and milk yield data. Holstein heifer calves born at the Michigan State Dairy Cattle Teaching and Research Center were randomly assigned to 1 of 2 dietary treatments (n = 40/treatment) that continued from 2 d of age until weaning at 42 d of age. The conventional diet consisted of a standard milk replacer [21.5% crude protein (CP), 21.5% fat] fed at 1.2% of body weight (BW) on a dry matter basis and starter grain (19.9% CP) to attain 0.45 kg of daily gain. The intensive diet consisted of a high-protein milk replacer (30.6% CP, 16.1% fat) fed at 2.1% of BW on a dry matter basis and starter grain (24.3% CP) to achieve 0.68 kg of daily gain. Calves were gradually weaned from milk replacer by decreasing the amount offered for 5 and 12 d before weaning for the conventional and intensive diets, respectively. All calves were completely weaned at 42 d of age and kept in hutches to monitor individual starter consumption in the early postweaning period. Starting from 8 wk of age, heifers on both treatments were fed and managed similarly for the duration of the study. Body weight and skeletal measurements were taken weekly until 8 wk of age, and once every 4 wk thereafter until calving. Calves consuming the intensive diet were heavier, taller, and wider at weaning. The difference in withers height and hip width was carried over into the early post-weaning period, but a BW difference was no longer evident by 12 wk of age. Calves fed the intensive diet were younger and lighter at the onset of puberty. Heifers fed the high-energy and protein diet were 15 d younger at conception and 14 d younger at calving than heifers fed the conventional diet. Body weight after calving, daily gain during gestation, withers height at calving, body condition score at calving, calving difficulty score, and calf BW were not different. Energy-corrected, age-uncorrected 305-d milk yield was not different, averaging 9,778 kg and 10,069 kg for heifers fed the conventional and intensive diets, respectively. However, removing genetic variation in milk using parent average values as a covariate resulted in a tendency for greater milk from heifers fed the intensive diet. Preweaning costs were higher for heifers fed the intensive diet. However, total costs measured through first lactation were not different. Intensified feeding of calves can be used to decrease age at first calving without negatively affecting milk yield or economics.  相似文献   

20.
Two experiments were conducted to determine the influence of plane of nutrition during (1) the pre- and immediate postweaning periods and (2) the grower phase on the performance and leukocyte responses of Holstein calves. In experiment 1, 39 (2 ± 1 d old) colostrum-fed heifer calves were randomly assigned to 2 planes of nutrition, a low (LPN; n = 19) and a high plane of nutrition (HPN; n = 20). Calves in the LPN treatment were offered 418 g/d of dry matter (DM) of a 20% crude protein (CP)/20% fat milk replacer, whereas calves in the HPN treatment were offered 747 and 1,010 g/d of DM of a 28% CP/20% fat milk replacer during wk 1 and wk 2 to 6, respectively. Calves were offered ad libitum access to a calf starter until the end of the study. Peripheral blood samples were collected on d 3, 10, 21, 45, 47, 53, and 91 for many ex vivo leukocyte responses and biochemical analyses. A nutrition × time interaction was present for average daily gain and feed efficiency (feed:gain ratio). A nutrition × time interaction existed for plasma glucose concentration. Neutrophil L-selectin expression was greater in calves fed the LPN than HPN on d 3 and 21. The percentage of neutrophils producing an oxidative burst (OB) when cocultured with Escherichia coli tended to be greater and was greater in calves fed the LPN than HPN on d 10 and 21, respectively. In addition, neutrophils from calves fed the LPN had greater OB intensity throughout the neonatal period (0 to 21 d). However, plasma haptoglobin was not different between the 2 planes of nutrition throughout the study. In experiment 2, 50 heifer calves that were all previously fed a HPN similar to that described for experiment 1 were randomly assigned to 2 planes of nutrition (HPN and LPN) during the grower phase (5 pens/treatment; 5 calves/pen). Calves fed the HPN during the grower phase were fed 4.1 kg of concentrate DM (pellets; 22.4% CP, DM basis) per head per day, whereas calves on the LPN during the grower phase were fed 1.6 kg of DM of the same concentrate per head per day. All calves were fed alfalfa hay (16.2% CP; DM basis) ad libitum. Overall, average daily gain was greater in HPN calves than LPN calves. No differences were noticed for concentrations of plasma urea nitrogen, glucose, neutrophil L-selectin expression, percentage of neutrophils producing OB, and plasma haptoglobin concentration between the 2 planes of nutrition. In summary, intake and performance were improved in calves fed the HPN than calves fed the LPN in both experiments. The neutrophil responses of calves fed an LPN were more active during the preweaning period than calves fed an HPN; however, this response was not observed during the immediate postweaning period or the grower phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号