首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Crude glycerol will increase to over 400 million L year?1, and the market is likely to become saturated due to the limited demand for glycerol. The main aim of this work is to develop a novel process for the sustainable conversion of glycerol to 1,2‐propanediol (l,2‐PD). RESULTS: Cu‐H4SiW12O40/Al2O3 catalysts with different H4SiW12O40 (STA) loadings were prepared for the hydrogenolysis of glycerol to produce l,2‐PD in liquid phase. At 513 K, 6 MPa and LHSV of 0.9 h?1 in 10% (w/w) glycerol aqueous solutions, the catalyst with 5% (w/w) STA showed the best performance with 90.1% of glycerol conversion and 89.7% selectivity to l,2‐PD. More important, both the initial glycerol conversion and l,2‐PD selectivity were maintained over 250 h. CONCLUSION: l,2‐PD can be continuously produced with high yields via the liquid phase hydrogenolysis of glycerol over Cu‐H4SiW12O40/Al2O3. Furthermore, the characterization indicated that catalyst acidity could be greatly modified by STA, which promoted Cu reducibility. It was also found that hydrogenolysis could be favored by a bi‐functional catalyst with the appropriate amount of both acid and metal sites. Copyright © 2010 Society of Chemical Industry  相似文献   

2.

Abstract  

Hydrogenolysis of glycerol to 1,3-propanediol in aqueous-phase was investigated over Pt-H4SiW12O40/SiO2 bi-functional catalysts with different H4SiW12O40 (HSiW) loading. Among them, Pt-15HSiW/SiO2 showed superior performance due to the good dispersion of Pt and appropriate acidity. It is found that Br?nsted acid sites facilitate to produce 1,3-PDO selectively confirmed by Py-IR. The effects of weight hourly space velocity, reaction temperature and hydrogen pressure were also examined. The optimized Pt-HSiW/SiO2 catalyst showed a 31.4% yield of 1,3-propanediol with glycerol conversion of 81.2% at 200 °C and 6 MPa.  相似文献   

3.
Non-noble metal Ni/NaX catalyst was prepared and used in the hydrogenolysis of aqueous glycerol. Characterization by XRD, SAED, H2 chemisorption, ICP and NH3-TPD techniques disclosed that the proper strong acid sites were responsible for the high activity and selectivity. Over Ni/NaX catalyst, conversion of glycerol reached 86.6% with 94.6% selectivity to glycols including 1,2-proplyene glycol and ethylene glycol under 6.0 MPa H2 pressure at 200 °C after 10 h reaction. Additionally, the effects of time, temperature, and H2 pressure were investigated in detail.  相似文献   

4.
Ruthenium-doped (5 wt%) acidic heteropoly salt Cs2.5H0.5[PW12O40] (CsPW) is an active bifunctional catalyst for the one-pot hydrogenolysis of glycerol to 1,2-propanediol (1,2-PDO) in liquid phase, providing 96% selectivity to 1,2-PDO at 21% glycerol conversion at 150 °C and an unprecedented low hydrogen pressure of 5 bar. Rhodium catalyst, 5%Rh/CsPW, although less active, shows considerable selectivity to 1,3-PDO (7.1%), with 1,2-PDO being the main product (65%).  相似文献   

5.
The effect of preparation methods on the Cu/ZnO/Al2O3 catalyst structure and catalytic activity on liquid glycerol hydrogenolysis to 1,2-propanediol has been investigated. The physicochemical properties of the catalysts were characterized by BET, XRD, TG/DTA, NH3-TPD and TPR. The experimental results showed that the catalyst prepared by an oxalate gel–coprecipitation had the highest activity. At 200 °C and 400 psi hydrogen pressure, the glycerol conversion and 1,2-propanediol selectivity catalyzed by the Cu/ZnO/Al2O3 catalyst prepared via oxalate gel–coprecipitation were 92.3 and 94.5 % respectively. It was found that the 1,2-propanediol selectivity was dependent on hydrogen pressure and the un-desired by-products were mainly due to the side reactions caused by the presence of the intermediate acetol.  相似文献   

6.

The effect of preparation methods on the Cu/ZnO/Al2O3 catalyst structure and catalytic activity on liquid glycerol hydrogenolysis to 1,2-propanediol has been investigated. The physicochemical properties of the catalysts were characterized by BET, XRD, TG/DTA, NH3-TPD and TPR. The experimental results showed that the catalyst prepared by an oxalate gel–coprecipitation had the highest activity. At 200 °C and 400 psi hydrogen pressure, the glycerol conversion and 1,2-propanediol selectivity catalyzed by the Cu/ZnO/Al2O3 catalyst prepared via oxalate gel–coprecipitation were 92.3 and 94.5 % respectively. It was found that the 1,2-propanediol selectivity was dependent on hydrogen pressure and the un-desired by-products were mainly due to the side reactions caused by the presence of the intermediate acetol.

  相似文献   

7.
BACKGROUND: The conversion of glycerol to value‐added derivatives is now critical, owing to the large surplus of glycerol from biodiesel production. The main objective of this work is to develop a novel process for converting solvent‐free glycerol to 1,2‐propanediol. RESULTS: Several catalysts were screened for aqueous‐phase hydrogenolysis of glycerol in an autoclave. The most effective catalysts (Ni/Al2O3, Cu/ZnO/Al2O3) were further tested for vapor phase hydrogenolysis in a fixed‐bed. Ni/Al2O3 did not prove as effective for the production of 1,2‐propanediol because of the high selectivity to CH4 and CO. Over Cu/ZnO/Al2O3, glycerol was mainly converted to the desired 1,2‐propanediol and the reaction intermediate acetol. The production of 1,2‐propanediol was favoured at higher hydrogen pressure. At 190 °C and 0.64 MPa, near complete conversion of glycerol was achieved with 1,2‐propanediol selectivity up to 92%. In addition, a higher concentration (between 43.4% and 0.8%) of acetol was detected and an approximately stoichiometric relationship was found between acetol and 1,2‐propanediol. CONCLUSION: 1,2‐propanediol can be produced with high yields via the vapor phase hydrogenolysis of glycerol over Cu/ZnO/Al2O3. Furthermore, the mechanism of 1,2‐propanediol formation is suggested to proceed mainly through an acetol route over Cu/ZnO/Al2O3. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
The catalytic activities of Cu/MOx (MOx = Al2O3, TiO2, and ZnO) catalysts in the gas‐phase hydrogenolysis of glycerol were studied at 180–300 °C under 0.1 MPa of H2. Cu/MOx (MOx = Al2O3, TiO2, and ZnO) catalysts were prepared by the incipient wetness impregnation method. After reduction, CuO species were converted to metallic copper (Cu0). Cu/Al2O3 catalysts with high acidity, high specific surface areas and small metallic copper size favored the formation of 1,2‐propanediol with a maximum selectivity of 87.9 % at complete conversion of glycerol and a low reaction temperature of 180 °C, and favored the formation of ethylene glycol and monohydric alcohols at high reaction temperature of 300 °C. Cu/TiO2 and Cu/ZnO catalysts exhibited high catalytic activity toward the formation of hydroxyacetone with a selectivity of approx. 90 % in a wide range of reaction temperature.  相似文献   

9.
Glycerol dehydroxylation on a Raney cobalt catalyst in hydrogen was studied. It was found that with an increase in temperature from 140 to 200°C at a hydrogen pressure of 30 MPa, glycerol conversion increases from 14 to 97%. The glycerol is completely converted in 20 h, and the yield of 1,2-propanediol is 40%. With an increase in H2 pressure from 3 to 8 MPa, the glycerol conversion increases from 34 to 95%, and the yield of 1,2-propanediol increases from 18 to 38%. The maximum yield of 1,2-propanediol is 44% at 200°C and a hydrogen pressure of 3 MPa. The glycerol dehydroxylation in hydrogen on heterogeneous catalysts can be considered a promising method of glycerol conversion when glycerol is a byproduct of biodiesel manufacture from vegetable oil and animal fats.  相似文献   

10.
Lan Ma  Dehua He 《Topics in Catalysis》2009,52(6-7):834-844
Several supported Ru–Re bimetallic catalysts (Ru–Re/SiO2, Ru–Re/ZrO2, Ru–Re/TiO2, Ru–Re/H-β, Ru–Re/H–ZSM5) and Ru monometallic catalysts (Ru/SiO2, Ru/ZrO2, Ru/TiO2, Ru/H-β, Ru/H–ZSM5) were prepared and their catalytic performances were evaluated in the hydrogenolysis of glycerol to propanediols (1,2-propanediol and 1,3-propanediol) with a batch type reactor (autoclave) under the reaction conditions of 160 °C, 8.0 MPa and 8 h. Compared with Ru monometallic catalysts, the Ru–Re bimetallic catalysts showed much higher activity in the hydrogenolysis of glycerol, and Re exhibited obvious promoting effect on the performance of the catalysts. The supported Ru monometallic catalysts and Ru–Re bimetallic catalysts were characterized by N2 adsorption/desorption, XRD, TEM-EDX, H2-TPR and CO chemisorption for obtaining some physicochemical properties of the catalysts, such as specific surface areas, crystal phases, morphologies/microstructure, reduction behaviors and dispersion of Ru metal. The results of XRD and CO chemisorption indicate that the addition of Re component could improve the dispersion of Ru species on supports. The measurements of H2-TPR revealed that the coexistence of Re and Ru components on supports changed the respective reduction behavior of Re or Ru alone on the supports, indicating the existence of synergistic effect between Ru and Re species on the bimetallic catalysts. The hydrogenolysis of some products (such as 1,2-propanediol, 1,3-propanediol, 1-propanol and 2-propanol) were also examined over Ru and Ru–Re catalysts for evaluating influence of Re–Re on the reaction routes during glycerol hydrogenolysis. The results showed that over Ru–Re catalysts, glycerol was favorable to be converted to 1,2-propanediol, but not favorable to ethylene glycol, while 1,2-propanediol and 1,3-propanediol were favorable to be converted to 1-propanol. The influence of glycerol concentration in its aqueous solution on the catalytic performance was also evaluated over Ru and Ru–Re catalysts.  相似文献   

11.
Net propylene glycol (1,2 propanediol) yields of up to 94% at 100% glycerol conversion have been achieved over a fixed bed Raney® Cu catalyst in trickle bed mode, at relatively low total pressure, 14 bar (200 psig), and minimal feedstock dilution (20 wt% water). The main identified byproducts are ethylene glycol and ethanol (each <2%), with methanol and 1,3 diol both <1%. The other key operating parameters for high yields are a narrow optimum in temperature (near 205 °C), and a high H2/liquid flow ratio, about 375/0.05 by volume. The effects of chromium promotion have also been studied for effects on side reactions and rates. Our evidence points to initial dehydrogenation as the rate-limiting step in a likely three step mechanism.  相似文献   

12.
A Ni-Cu-SiO2 nanocomposite was studied as a catalyst for vapor-phase glycerol hydrogenation to produce 1,2-propanediol (1,2-PDO). Substitution of a small amount (3 wt%) of Ni for Cu is beneficial for decreasing the Cu particle size, which would be advantageous for attaining higher 1,2-PDO selectivity and higher glycerol conversion. 92% 1,2-PDO selectivity and 100% glycerol conversion were obtained at 220 °C, 30 bar, and a weight hourly space velocity of 0.5 h 1 over Ni(3)-Cu(77)-SiO2, which were nearly identical to those obtained with the conventional copper chromite (CuO-Cr2O3) catalyst. Therefore, the present Ni(3)-Cu(77)-SiO2 nanocomposite is regarded as a green and efficient catalyst for glycerol conversion into more valuable 1,2-PDO.  相似文献   

13.
Selectively catalyzed dehydration of ethanol, 1,2-propylene glycol, and glycerol on supported heteropoly acid (HPA) was studied using transient diffuse reflectance infrared fourier transform spectroscopy (DRIFTS). Tungstosilicic acid (H4[SiW12O40] denoted as H4SiW), supported on neutral mesoporous alumina as a catalyst, was studied to investigate the formation of intermediate products and desired dehydration products on the catalyst surface. Both ethylene-containing species and surface-bound carboxyl species were detected for all three alcohols. The formation of ethylene was promoted at lower temperatures while an increased reaction temperature facilitated the formation of acetate products when ethanol was used. When 1,2-propylene glycol was used, surface-bound carboxyl species were found as major intermediate products; these might have formed from propanal produced from the hydration reaction catalyzed by acid sites on HPA. Intermediate species from more complicated reactions were detected on the catalyst surface when glycerol was used, including aldehyde, surface-bound carboxyl species, and alkene species. The results indicated that acid dehydration might be facilitated either by the addition of water or lowering the reaction temperature. The work provides insight into reaction pathways for bio-polyols, and therefore is informative for designing cost-effective and efficient chemical catalysis systems for the conversion of bio-renewables.  相似文献   

14.
The catalytic dehydroxylation of glycerol in a flow mode was studied. This is one of the methods for utilization of excess glycerol accumulated during the production of biodiesel fuel. Raney nickel and Ni-Cr2O3 were used as catalysts. The possibility of glycerol dehydroxylation on Raney nickel and Ni-Cr2O3 catalysts in flow units was studied for the first time. The Raney catalyst showed higher activity in glycerol dehydroxylation compared with Ni-Cr2O3. At 220°C and 2 MPa, the conversion of glycerol and the yield of 1,2-propanediol was 88 and 35% on Raney nickel versus 16 and 6.5% on Ni-Cr2O3, respectively. The reaction under the given conditions, however, formed large amounts of by-products: ethylene glycol, simple alcohols, and methane. At pressures of H2 of over 2 MPa, the yield of the acetol by-product decreased considerably, ultimately increasing the efficiency of the process. The Raney catalyst can be used for the dehydroxylation of glycerol in flow units under relatively mild conditions (up to 240°C and 2 MPa).  相似文献   

15.
Undecylenic acid, glycerol, and CO2 were used as building blocks for obtaining a fully bio-based carbonated monomer, useful for polyurethanes. The functionality of the monomer was close to 3 cyclic carbonates/mol, located in terminal positions. In a first stage, a synthetic triglyceride was obtained with 99% selectivity by esterification of glycerol and undecylenic acid at 160°C. The triglyceride was then epoxidized using H2O2 and Amberlyst 15 or Amberlite IR-120 acidic exchange resins at 57°C. The selectivity to epoxide was kept constant at 98% using Amberlite IR-120. Terminal cyclic carbonates were then inserted through epoxide moieties under mild conditions by the chemical fixation of CO2 at 80°C and 6 MPa in 6 h. A complete conversion was obtained in 6 h reaction while the selectivity to carbonate groups was near to 99% during all the reaction time. An elastomeric polyhydroxyurethane was obtained by aminolysis of the carbonated monomer with ethylenediamine at 70°C, affording a Young's modulus of 22.6 MPa and Tg of −15.2°C. The material showed a good thermal stability below 240°C.  相似文献   

16.
Pt-based catalysts supported on TiO2 and SIRAL 20 (Al2O3–20 wt.%SiO2) were prepared and characterized by H2 chemisorption, FTIR of adsorbed pyridine and 3,3-dimethyl-1-butene isomerization. The catalysts were evaluated for the transformation under aqueous phase of glycerol and 1,2-propanediol at 210 °C, under 60 bar as total pressure (H2 atmosphere). Under similar conditions, 1,2-propanediol is easier converted than glycerol, indicating that in the glycerol transformation process in aqueous phase, the 1,2-propanediol reactivity is inhibited by the presence of glycerol. This behavior is explained by a strong adsorption of glycerol compared to 1,2-propanediol on the catalyst surface.  相似文献   

17.
The isomerization of 1-hexene, 1-heptene and 1-octene has been observed in the liquid phase between 303 and 343 K on the solid ammonium salts of 12-tungstophosphoric (H3PW12O40), 12-molybdophosphoric (H3PMo12O40) and 12-tungstosilicic (H4SiW12O40) acid and their parent acids. Double bond and cistrans isomerizations of the olefins are strongly catalyzed by H3PW12O40, (NH4)3PW12O40 and H4SiW12O40 and weakly by H3PMo12O40, (NH4)4SiW12O40 and (NH4)3PMo12O40 at near ambient temperatures. No skeleton isomerization of any of the olefins was observed at temperatures up to 343 K. Variations of the product distributions with reaction time and the dependence of selectivity on the conversion are reported. The isomerization is tentatively attributed to the formation of carbocations and 1,2-hydride shifts.  相似文献   

18.
CuCl2/γ-Al2O3 catalysts with and without promoter metal chlorides (Cu5.0, K3.1Cu5.0, La10.9Cu5.0, Li0.5Cu5.0, Cs10.4Cu5.0, Mg1.9Cu5.0, Ce5.5La5.45Cu5.0, and K1.55La5.45Cu5.0) were studied for the ethene oxychlorination reaction in a fixed-bed reactor at 503 and 573 K, with C2H4:HCl:O2:He = 1.0:1.1:0.38:14.4 (mole ratio), P(tot) = 1 atm and weight hourly space velocity (WHSV) = 1.5 g g?1 h?1 (based on ethene). It was found that all promoter metals enhanced the activity of the catalyst, as well as its selectivity towards the target product 1,2-dichloroethane (1,2-EDC). Co-promoted catalysts (K1.55La5.45Cu5.0 and Ce5.5La5.45Cu5.0) gave even higher activity and product selectivity than the single metal promoted catalysts. The activity of the CuCl2/γ-Al2O3 catalyst, as well as the γ-Al2O3 support, both with and without metal chloride promoter(s), were further tested for 1,2-EDC conversion to byproducts in a fixed-bed reactor at 503 K, under a feed stream of 1,2-EDC:Ar = 1:11.5 (mole ratio), at P(tot) = 1 atm and WHSV = 1.5 g g?1 h?1 (based on 1,2-EDC). Prior to testing, the catalysts were pretreated in flowing ethene, HCl and/or O2. It was observed that Lewis and Brønsted acid sites on the alumina surface were main reaction sites for conversion of 1,2-EDC to chlorinated byproducts: vinyl chloride monomer (VCM), 1,1-EDC, 1,2-dichloroethene (1,2-DCE) and ethyl chloride (EC) as well as dimerisation (butadiene) and aromatisation reactions (toluene), both with and without the presence of the Cu phase. The Cu phase was shown to contribute mainly to CO2 and trichloroethane formation from 1,2-EDC via VCM. Co-promotion (K1.55La5.45Cu5.0) was found to enhance the activity of the Cu phase, and to mask acid sites on the alumina surface, thereby promoting ethene oxychlorination while at the same time hindering undesired conversion of the target product 1,2-EDC.  相似文献   

19.
The influence of technological parameters like hydrogen pressure, temperature, glycerol concentration in aqueous solution, amount of catalyst, stirring speed, and reaction time on glycerol hydrogenolysis to 1,2‐propanediol over a Cu/Al2O3 catalyst prepared by coprecipitation was investigated. Functions describing the process were glycerol conversion as well as selectivity to 1,2‐propanediol and to by‐products in the liquid and gas phase. The structure and properties of synthesized Cu/Al2O3 were characterized by X‐ray diffraction, energy dispersive X‐ray microanalysis, BET surface area, average pore volume, and pore diameter. Catalyst recycle studies were also performed.  相似文献   

20.
During primary screening, catalysts which enable production of syngas or hydrogen from glycerol with high yields under soft conditions were revealed. Nickel and nickel-gold catalysts on various supports support were studied in the reaction of steam conversion of glycerol. Nickel catalysts on acidic supports (F-Al2O3 and B2O3-Al2O3) were ascertained to provide 73% selectivity toward H2 at temperatures as low as 520°C, glycerol conversion amounting to 48%, which allows one to consider these catalysts to be applicable for H2 production from glycerol. 30% Ni/Al2O3 catalyst produced according to the original sol-gel procedure allows one to obtain syngas with a composition suitable for methanol production at relatively low temperatures (520–570°C) and almost complete glycerol conversion. A strongly pronounced synergetic effect was ascertained for 0.27% Au-0.09% Ni/Al2O3. Glycerol conversion on this catalyst at 570°C attains 67%; the composition of the resultant gas mixture is applicable for methanol production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号