首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Co/Mg/Al类水滑石对废水中Cr(VI)的吸附性能研究   总被引:8,自引:0,他引:8  
采用共沉淀法合成CoMgAl-LDHs,并用XRD与IR表征其结构.测试了CoMgAl—LDHs的焙烧产物(CoMgAl-LDO)在模拟与实际含Cr(VI)废水中的吸附性能,并对影响其吸附性能的各因素(pH值、温度、吸附时间、初始浓度)进行探讨.研究结果表明,吸附的最佳实验条件为pH=6,温度为40℃,初始浓度为100mg/L,吸附时间为60min.在最佳实验条件下,CoMgAl—LDO对实际制革废水中Cr(VI)的饱和吸附量达15.7mg/g,废水中残留Cr(VI)浓度为0.2mg/L,低于工业废水排放的国家标准(0.5mg/L).  相似文献   

2.
采用腐殖酸( HA)修饰铝-柱撑膨润土( Al-PILC),制备得到腐殖酸-柱撑膨润土( HA-Al-PILC),用于去除含铀废水中的铀.通过静态吸附实验考察了投加量、pH值,接触时间、U( VI)初始浓度对吸附的影响,同时进行了吸附解吸实验.试验结果表明,HA修饰后的Al-PILC对U( VI)的去除能力有了一定程度的提高;HA-Al-PILC对U(VI)有很好的去除效果,150 min左右吸附达到平衡,最佳投加量为1.0 g/L,最佳pH值在6左右;HA-Al-PILC能重复使用.  相似文献   

3.
采用溶胶-凝胶法制备了纳米Al2O3,研究其对Cr(Ⅵ)和Cr(Ⅲ)的吸附,探讨了pH值、吸附时间、吸附体积和纳米Al2O3用量对吸附效果的影响,同时探讨了洗脱条件.结果表明:纳米Al2O3在pH:3.6对Cr(Ⅵ)的吸附率达到95%以上,在pH=9.1时对Cr(Ⅲ)的吸附率达到95%以上,分别以2mol/LNaOH溶液为Cr(Ⅵ)的洗脱剂,2mol/L HAc溶液为Cr(Ⅲ)的洗脱剂,在沸水浴中加热可完全洗脱纳米Al2O3所吸附的Cr(Ⅵ)和Cr(Ⅲ),试用于样品分析,结果满意.此研究对痕量铬的形态分离、富集及分析有较高的应用价值.  相似文献   

4.
为提出基于新型磁纳米Fe3 O4催化剂的类Fenton体系,采用化学共沉淀法制备磁纳米Fe3 O4,用四甲基氢氧化铵( TMAH)对所制备的磁纳米Fe3 O4进行表面改性,就Fe3 O4-H2 O2类Fenton体系对苯酚废水的处理效果进行探讨,考察催化剂投量、H2 O2浓度、pH、反应时间等因素对COD和挥发酚去除率的影响.结果表明:磁纳米颗粒平均粒径为30 nm,并在20~100 nm内呈现良好的粒度分布.不同剂量TMAH包覆的3种催化剂经超声预处理后,在室温(13℃)下对50 mg/L苯酚(相当于112 mg/L COD)的降解效果基本一致.当催化剂投量为0.8 mmol/L、H2 O2浓度为2.0 mmol/L、pH为4.5、反应时间180 min时,COD去除率最高可达72%;催化剂投量为0.4 mmol/L、H2 O2浓度为2.0 mmol/L、 pH为4.5、反应时间为90 min时,挥发酚的去除率接近100%.而在重复使用方面,3#Fe3O4-TMAH(2 mL)催化剂的回用性最好,4次反应COD的去除率分别为73%、29%、28%、26%,挥发酚去除率分别为100%、84%、67%、54%.该类Fenton体系具有不产生多余泥量的优点,且磁纳米催化剂在外磁场作用下可实现快速分离回收.  相似文献   

5.
泥煤对铬(VI)吸附动力学研究   总被引:1,自引:0,他引:1  
对泥煤吸附Cr(VI)的动力学过程进行了研究。结果表明,pH值和初始Cr(VI)质量浓度对Cr(VI)的吸附率有明显的影响,pH值越小,泥煤表面正电性越高,Cr(VI)吸附率越高;初始Cr(VI)质量浓度越小,Cr(VI)吸附率越高;初始Cr(VI)质量浓度位于10~20mg/L,新型L—F动力学模型能很好地描述泥煤吸附过程;新型L—F动力学方程直线化截距导出的参数Go/(Go—Ce)可以反映吸附剂的吸附强弱,“多化一”法推出了Cr(VI)初始浓度与吸附常数k拟合函数关系。  相似文献   

6.
采用柚子皮制备生物吸附剂用于去除水中的Cr(VI),考察了pH值、柚子皮投加量、柚子皮粒径、溶液离子强度、反应温度等因素对吸附效果的影响。结果表明,当溶液中Cr(VI)离子初始浓度15mg/L、pH 1.5、反应温度25℃、柚子皮投加量1.Og/100mL、吸附时间7h时,Cr(VI)离子去除率可达90%以上。柚于皮对Or(VI)离子的吸附过程可以用Langmuir和Freundlich吸附等温模型来描述,吸附等温线线性相关性均较显著,吸附过程符合准二级动力学方程。柚子皮对水中Cr(VI)离子吸附性能较好,且运行成本低,可推广应用于水中重金属离子的治理。  相似文献   

7.
以石墨炉原子吸收为检测手段,研究了纳米TiO2对金属Pb的吸附性能,考察了吸附和洗脱的主要影响因素.结果表明:在pH4~5范围内,纳米TiO2对金属Pb具有良好的吸附性,吸附率达到96.5%,0.1mol/L的盐酸即可将纳米TiO2吸附的铅完全洗脱.在优化的实验条件下,静态吸附量为15.9mg/g.其检出限为(3σ)2.02×10^-13g,RSD为3.18%~5.21%,富集倍数为75倍,加标回收率在96.0%~100.5%之间.该方法对标准样品的测定与参考值相吻合,用于实际食品中Pb的测定,结果令人满意.  相似文献   

8.
利用灭活啤酒酵母菌吸附溶液中铀的影响因素探讨   总被引:3,自引:0,他引:3  
初步探讨了啤酒酵母菌吸附铀的特性,考察了溶液pH值、铀的初始浓度等对吸附能力的影响,得出最佳pH值为6.0,结果表明:啤酒酵母菌对铀的吸附量大,由Langmuir吸附模型得出qmax=196.1mg/g,最后研究了铀的解吸,用Na2CO3或NaHCO3解吸效果较好,解吸率分别为87.8%和87.2%。  相似文献   

9.
基于铬(VI)对荧光试剂头孢拉定(CEFC)的荧光熄灭,建立了测定铬(VI)的荧光分析方法.在pH=3.0的盐酸介质中,最大激发与发射波长分别350nm和431nm及CEPC加入量为0.400g/L等条件下,相对荧光强度F护与铬(VI)的浓度lgc呈良好的线性关系,测定铬(VI)浓度的线性范围为1.0×10^-6-4.0×10^-4mol/L,检出限为8.3×10^-7-mol/L,常见的共存离子不干扰测定,此分析方法可用于环境水样中铬(VI)含量的测定.  相似文献   

10.
采用溶胶—凝胶法合成了纳米级ZrO2,研究了纳米ZrO2对Cu(Ⅱ)的吸附,优化了吸附条件,探讨了洗脱条件.结果表明:纳米ZrO2在pH=9.0~11.0范围内对Cu(Ⅱ)的吸附率达到95%以上,在98℃时,以0.7 mol/L的HCl为洗脱剂,可定量洗脱纳米ZrO2所吸附的Cu(Ⅱ);考察了共存离子的影响,证明常见重金属离子无明显干扰.吸附容量为3.1 mg/g,富集倍数为50倍.回收的纳米ZrO2可重复使用.应用于样品分析,结果满意.  相似文献   

11.
以4A和13X分子筛为吸附材料,考察废水pH值和Cd2+初始浓度等对Cd2+去除率的影响,并研究了分子筛对Cd2+的吸附性能。结果表明,4A和13X分子筛投加量为0.16 g/L、废水pH值为5、Cd2+浓度为20 mg/L时,Cd2+去除率达到95%以上;分子筛对Cd2+的去除机理以离子交换吸附为主,交换出来的Na+与分子筛吸附的Cd2+摩尔浓度比为2;在吸附热力学和动力学方面,4A和13X分子筛均符合Langmuir吸附等温模型和Lagergren二级速率方程,计算的饱和吸附容量 Q0分别为150.15、163.67 mg/g ,二级反应速率常数K2分别为2.45×10-3、3.96×10-4 g/(mg · s)。该吸附反应是一种单分子层反应速度较快的化学吸附过程。  相似文献   

12.
针对土壤对F^-离子的吸附问题,通过模拟实验探讨了土壤对F^-离子的吸附规律、吸附动力学及吸附机理,并确定了等温吸附式.实验结果表明,随着平衡溶液中F^-浓度的增大,土壤对F^-离子吸附量的增加速度先快后慢,当平衡液质量浓度约为0.16131g/L时吸附量趋于饱和.土壤对F^-离子的吸附符合Freundlich型吸附等温式.用NFLS法拟合出了土壤对F^-离子的吸附动力学曲线.土壤对矿井水中的F^-离子有较好的吸附作用且能较快达到吸附平衡.  相似文献   

13.
用Al2(SO4)3溶液与羧甲基葡甘聚糖反应制得新型吸附材料——羧甲基葡甘聚糖铝凝胶球,用扫描电镜表征了微球结构,测定了微球机械强度.研究了微球对氟离子的吸附性能,分别考察了铝离子浓度、羧甲基葡甘聚糖浓度、吸附时间、pH值、氟离子浓度和温度等因素对吸附的影响,同时用红外光谱初步表征了微球的结构.结果表明,293 K时,微球对氟离子的吸附在6h达平衡,当羧甲基葡甘聚糖质量浓度为1.2%,铝离子质量浓度为2.0%,氟离子浓度为90.50 mg/L时,吸附量为47.02mg/g.根据不同温度下铝凝胶球吸附氟离子的等温线,计算了吸附过程的热力学参数,同时用Freundlich方程对实验数据进行了拟合,发现该方程适用于所研究的吸附体系.该体系为自发放热过程,体系熵减少,降温有利于吸附.  相似文献   

14.
松花江底泥对铅离子吸附的影响因素分析   总被引:1,自引:0,他引:1  
研究了松花江底泥对水体中铅离子吸附的影响因素.实验结果表明,pH值、吸附剂量及铅离子初始浓度对松花江底泥吸附铅离子作用有影响.当底泥量为1.0 g,铅标准溶液浓度为10 mg/L~120 mg/L范围内,随着铅离子初始浓度的增加,底泥的吸附量明显增大.  相似文献   

15.
制备了负载型吸附剂Al(OH)3/SiO2,研究其对铀酰离子的吸附行为。分别考察了吸附剂质量、溶液pH、初始浓度、温度和吸附时间对吸附性能的影响;结合吸附等温线、热力学以及动力学初步研究了吸附机理,并探究了共存离子和富里酸对吸附性能的影响。结果表明,当吸附剂质量0.03 g、pH=5、初始浓度1 mmol/L、温度303 K、吸附时间60 min时,最大吸附量为110.4 mg/g,可以重复使用4次;Al(OH)3/SiO2对铀酰离子的吸附过程是吸热且自发进行,以单分子层吸附为主,吸附行为符合准二级动力学模型,化学吸附是速率控制步骤。  相似文献   

16.
天然高分子吸附剂吸附水中的 Cu2+和Ni2+   总被引:9,自引:4,他引:5  
为了更有效地去除水中的Cu2+和Ni2+,采用壳聚糖、泥炭和海藻3种吸附剂对Cu2+和Ni2+进行吸附性能研究。考察了溶液pH、吸附时间、吸附剂的质量浓度和金属离子的质量浓度对Cu2+和Ni2+吸附率的影响。结果表明,采用壳聚糖作为吸附剂,pH为6,吸附剂的质量浓度为3 g/L,吸附时间120 min的条件下,对Cu2+的吸附效果最好,吸附率可达98%。采用泥炭为吸附剂在pH为6,吸附剂的质量浓度为1 g/L,吸附时间为120 min时,对Ni2+的吸附效果最好,吸附率达80%。  相似文献   

17.
利用天然斜发沸石作为吸附剂,进行沸石静态吸附性能进行试验及分析.由试验结果可知,沸石对铵离子具有很强的选择性离子交换和吸附能力.在10min时,锥形瓶中氨氮的浓度为1.31mg/L,沸石对氨氮的去除率为73.8%;在20min时,锥形瓶中氨氮的浓度为0.96mg/L,沸石对氨氮的去除率为80.8%;在30min时,锥形瓶中氨氮的浓度为0.65mg/L,沸石对氨氮的去除率为87%;30min以后,沸石对氨氮的去除率增加不大.沸石和含氨氮的溶液发生吸附作用和离子交换作用之后,会造成其出水pH升高.沸石对微污染河水的CODMn的去除率为2.89%~3.78%,对微污染河水的UV254的去除率为5.41%~6.82%.  相似文献   

18.
基于在无荧光性的铈(Ⅳ)体系中加入抗坏血酸后生成有特征荧光的铈(Ⅲ)离子,体系中再加入一定浓度的甲醛溶液后,新体系的荧光性得到更大强度的增敏.据此建立了一种间接测定痕量铈(Ⅳ)离子的新方法.利用该方法铈(Ⅳ)离子浓度在1×10^-6mol/L~1×10^-4mol/L范围内呈良好的线性关系,检出限为7.2×10^-6mol/L.此方法具有操作简便、灵敏度高、选择性好等优点.  相似文献   

19.
1INTRODUCTION Inthepastdecade,muchprogresshasbeen madeinunderstandingthereactionsofasulfidemineralsurfacewithxanthateagents.Manyelec trochemicaltechniqueshavebeenemployedto studythereactionmechanismofsulfideminerals(suchaspyrite,galenaandchalcopyrite)with xanthatereagents[14].Theseinvestigationsindi catethattheoxidationofboththemineralandthe collectorplaysanimportantroleintheflotationprocess.Itisgenerallybelievedthatthereactions producethehydrophobicparticlesurfacesrequired inflotation.It…  相似文献   

20.
针对水中含有过多二价阳离子如钙离子等而使水质硬度较高的问题,使用丙烯酸、丙烯酰胺单体为主要原料,采用水溶液聚合法合成了具有三维网络结构和较高吸附能力的丙烯酸-丙烯酰胺高吸水树脂,然后用其做为硬水软化剂,对人工配置的浓度为3mmol/L的人工硬水进行吸附处理,研究了丙烯酸-丙烯酰胺高吸水树脂对人工硬水中所含钙离子的吸附能力.实验结果表明:所合成的丙烯酸-丙烯酰胺高吸水树脂对钙离子的最大吸附量为108mg/g,随着树脂用量的逐渐增加,树脂对钙离子的吸附率不断增大,最大吸附率可达76.2%以上.该方法原料来源广泛,生产过程中不产生污染,可给硬水软化提供一个新的技术参考思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号