首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe here an electron microscopy study of shear reversion-induced nanograined/ultrafine-grained (NG/UFG) structure and evolution of tensile strained microstructure in metastable type 301 austenitic stainless steel. The NG/UFG structure with grain size in the range of 200 to 500 nm was obtained by severe cold deformation and controlled annealing in the narrow temperature range of 973 to 1073 K (700 to 800 °C). The different stages of annealing involve the following: (a) transformation of strain-induced martensite to highly dislocated lath-type austenite, (b) formation of dislocation-cell structure and transformation to recovered austenite structure with defect-free subgrains, and (c) coalescence of subgrains to form a NG/UFG structure concomitant with a completely recrystallized structure, and consistent with martensitic shear-type phase reversion mechanism. The optimized cold working and annealing treatment resulted in NG/UFG material with a high yield strength (~1000 MPa) and high ductility (~30 pct) combination. Multiple deformation mechanisms were identified from postmortem electron microscopy examination of tensile strained NG/UFG 301 austenitic stainless steel and include dislocation glide and twinning. The evidence of heterogeneous nucleation of overlapping stacking faults and partial dislocations points toward deformation  相似文献   

2.
We recently described the reversal of strain-induced martensite to the parent austenite phase in the attempt to produce nanograins/ultrafine grains via controlled annealing of heavily cold-worked metastable austenite. The phase-reversion-induced microstructure consisted of nanocrystalline (d < 100 nm), ultrafine (d ≈ 100 to 500 nm), and submicron (d ≈ 500 to 1000 nm) grains and was characterized by high strength (800 to 1000 MPa)–high ductility (30 to 40 pct) combination, which was a function of cold deformation and temperature-time annealing sequence.[1] In this article, we demonstrate that the success of the approach in obtaining nanograined/ultrafine-grained (NG/UFG) structure depends on the predominance of dislocation-cell–type structure in the severely deformed martensite. Electron microscopy and selected area electron diffraction analysis indicated that with an increase in the degree of cold deformation there is transformation of lath martensite to dislocation-cell–type martensite, which is a necessary prerequisite to obtain phase-reversion-induced NG/UFG austenite. The transformation of lath-type to dislocation-cell–type martensite involves refinement of packet and lath size and break up of lath structure. Based on detailed and systematic electron microscopy study of cold-deformed metastable austenite (~45 to 80 pct deformation) and constant temperature-time annealing sequence, when the phase reversion kinetics is rapid, our hypothesis is that the maximization of dislocation-cell–type structure in lieu of lath-type facilitates NG/UFG structure with a high strength–high ductility combination. Interestingly, the yield strength follows the Hall–Petch relation in the NG/UFG regime for the investigated austenitic stainless steel.  相似文献   

3.
4.
This study investigates the effect of austenite reverted transformation (ART) annealing temperature and temper-rolling on the microstructure, mechanical properties, and deformation behaviors of cold-rolled Fe–0.25C–5.9Mn–1.0Al–1.57Si transformation-induced plasticity (TRIP) steel. The cold-rolled steel annealed at 700 °C demonstrates excellent mechanical properties. The ultimate tensile strength, total elongation, and product of strength and elongation are observed as 1212 MPa, 31.8%, and 38.6 GPa%, respectively. The excellent combination of strength and ductility is related to the discontinuous TRIP effect; still, an inhomogeneous deformation is observed during tensile deformation, known as the Lüders strain. Temper-rolling is used for the ART-annealed specimens at 700 and 720 °C, and yield point elongation decreases when temper-rolling reduction increases. When the temper-rolling reduction increases by 8%, the yield point elongation of the specimen annealed at 700 °C is noted at 1%, while the specimen annealed at 720 °C exhibits continuous yielding. The strain-induced martensite transformation and increased dislocation density in the ferritic matrix improve the early-stage strain hardening rate, thus suppressing the Lüders band's formation.  相似文献   

5.
The structure of corrosion-resistant austenitic 08Kh18N10T steel is studied after equal-channel angular pressing (ECAP), heating, and subsequent cyclic tests. After ECAP, an oriented mainly subgrain structure with a structural element size of 100–250 nm and a high fraction of deformation twins forms in the austenite of the steel, and 42 vol % of lath martensite appears. Dynamic twinning, martensitic transformation, dynamic recovery, and even recrystallization take place in the 08Kh18N10T steel during cyclic deformation in the course of fatigue tests according to the scheme of repeated tension. The fatigue strength increases after ECAP due to the refinement and twinning of an austenite structure and the appearance of martensite. The fatigue limit is maximal after ECAP and heating at 550°C for 20 h due to a high annealing twin density in a predominantly austenitic recrystallized matrix, intense dynamic twinning, and martensitic transformation during cyclic deformation.  相似文献   

6.
Cios  G.  Tokarski  T.  Żywczak  A.  Dziurka  R.  Stępień  M.  Gondek  Ł.  Marciszko  M.  Pawłowski  B.  Wieczerzak  K.  Bała  P. 《Metallurgical and Materials Transactions A》2017,48(10):4999-5008

This paper presents a comprehensive study on the strain-induced martensitic transformation and reversion transformation of the strain-induced martensite in AISI 304 stainless steel using a number of complementary techniques such as dilatometry, calorimetry, magnetometry, and in-situ X-ray diffraction, coupled with high-resolution microstructural transmission Kikuchi diffraction analysis. Tensile deformation was applied at temperatures between room temperature and 213 K (−60 °C) in order to obtain a different volume fraction of strain-induced martensite (up to ~70 pct). The volume fraction of the strain-induced martensite, measured by the magnetometric method, was correlated with the total elongation, hardness, and linear thermal expansion coefficient. The thermal expansion coefficient, as well as the hardness of the strain-induced martensitic phase was evaluated. The in-situ thermal treatment experiments showed unusual changes in the kinetics of the reverse transformation (α′ → γ). The X-ray diffraction analysis revealed that the reverse transformation may be stress assisted—strains inherited from the martensitic transformation may increase its kinetics at the lower annealing temperature range. More importantly, the transmission Kikuchi diffraction measurements showed that the reverse transformation of the strain-induced martensite proceeds through a displacive, diffusionless mechanism, maintaining the Kurdjumov–Sachs crystallographic relationship between the martensite and the reverted austenite. This finding is in contradiction to the results reported by other researchers for a similar alloy composition.

  相似文献   

7.
As-received hot-rolled commercial grade AISI 304L austenitic stainless steel plates were solution treated at 1060 °C to achieve chemical homogeneity. Microstructural characterization of the solution-treated material revealed polygonal grains of about 85-μm size along with annealing twins. The solution-treated plates were heavily cold rolled to about 90 pct of reduction in thickness. Cold-rolled specimens were then subjected to thermal cycles at various temperatures between 750 °C and 925 °C. X-ray diffraction showed about 24.2 pct of strain-induced martensite formation due to cold rolling of austenitic stainless steel. Strain-induced martensite formed during cold rolling reverted to austenite by the cyclic thermal process. The microstructural study by transmission electron microscope of the material after the cyclic thermal process showed formation of nanostructure or ultrafine grain austenite. The tensile testing of the ultrafine-grained austenitic stainless steel showed a yield strength 4 to 6 times higher in comparison to its coarse-grained counterpart. However, it demonstrated very poor ductility due to inadequate strain hardenability. The poor strain hardenability was correlated with the formation of strain-induced martensite in this steel grade.  相似文献   

8.
The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.  相似文献   

9.
In this study, medium Mn transformation-induced plasticity steel with the composition Fe-0.08 pct C-6.15 pct Mn-1.5 pct Si-2.0 pct Al-0.08 pct V was investigated. After intercritical annealing at 1013 K (740 °C), the steel contained coarse-grained ferrite and two ultrafine-grained (UFG) phases: ferrite and retained austenite. The material did not deform by localized Lüders band propagation: it did not suffer from this major problem as most UFG steels do. Localization of plastic flow was shown to be suppressed because of a combination of factors, including a bimodal grain size distribution, a multiphase microstructure, the presence of nanosized vanadium carbide precipitates, and the occurrence of the deformation-induced martensitic transformation of retained austenite. A constitutive model incorporating these effects was developed. The model was used to identify the factors which can lead to a further improvement of the mechanical properties of the UFG medium Mn TRIP steels.  相似文献   

10.
Tensile deformation behavior of mechanically stabilized Fe-Mn austenite   总被引:1,自引:0,他引:1  
The tensile deformation behavior of mechanically-stabilized austenite is investigated in Fe-Mn binary alloys. A 30 pct thickness reduction by rolling at 673 K (above the Af temperature) largely suppresses the austenite (γ) to hcp epsilon martensite (ε) transformation in 17Mn and 25Mn steels. However, the deformation behavior of the mechanically stabilized austenite in the two alloys differs significantly. In 25Mn steel, the onset of plastic deformation is due to the stress-induced γ→ ε transformation and results in a positive temperature dependence of the yield strength. The uniform elongation is enhanced by the γ → ε transformation during deformation. In 17Mn steel, bccα′ martensite is deformation-induced along with e and a plateau region similar to Lüders band deformation appears at the beginning of the stress-strain curve. The mechanical stabilization of austenite also suppresses the intergranular fracture of 17Mn steel at low temperatures. M. STRUM, formerly Candidate for Ph.D. at the University of California at Berkeley  相似文献   

11.
In-situ high-energy X-ray diffraction and material modeling are used to investigate the strain-rate dependence of the strain-induced martensitic transformation and the stress partitioning between austenite and α′ martensite in a metastable austenitic stainless steel during tensile loading. Moderate changes of the strain rate alter the strain-induced martensitic transformation, with a significantly lower α′ martensite fraction observed at fracture for a strain rate of 10?2 s?1, as compared to 10?3 s?1. This strain-rate sensitivity is attributed to the adiabatic heating of the samples and is found to be well predicted by the combination of an extended Olson–Cohen strain-induced martensite model and finite-element simulations for the evolving temperature distribution in the samples. In addition, the strain-rate sensitivity affects the deformation behavior of the steel. The α′ martensite transformation at high strains provides local strengthening and extends the time to neck formation. This reinforcement is witnessed by a load transfer from austenite to α′ martensite during loading.  相似文献   

12.
Multiphase, ultra-fine-grained transformation-induced plasticity (MP UFG TRIP) steel containing 6 mass pct Mn was obtained by cold rolling and intercritical annealing of an initially fully martensitic microstructure. UFG microstructures with an average grain size less than 300 nm were obtained. The amount of austenite in the microstructures, speculated to be formed by diffusionless transformation, was controlled by changing the intercritical temperature. The tensile properties were strongly influenced by the volume amount and the stability of the reversely transformed austenite. The MP UFG TRIP steel was characterized by pronounced localization of the deformation. The deformation band properties were analyzed in detail.  相似文献   

13.
Stainless steels (SSs) having a stable and metastable austenitic phase were studied to see the influence of strain-induced phase transformation in the metastable austenitic stainless steel on the evolution of texture during cold rolling and aging. AISI 304L and 316L SS plates were unidirectionally cold rolled up to a 90 pct reduction and aged at different aging temperatures. The strain-induced transformation of austenite to α′-martensite phase and the evolution of texture in both the phases were studied as a function of rolling reduction as well as aging temperature in the metastable 304L austenitic stainless steel. The X-ray diffraction (XRD) technique was employed to quantify the volume fractions and characterize the texture of austenite and martensite phases in the rolled and aged conditions. Results are compared with the texture evolution in the stable austenitic 316L SS.  相似文献   

14.
Lüders band usually apprears in medium Mn steel, and they are difficult to be eliminated without sacrificing the mechanical properties. In this study, a tailored two-step intercritical annealing approach is proposed to eliminate Lüders band and maintain excellent mechanical behavior. A strong ferritic matrix and austenite with appropriate stability are obtained, achieving excellent mechanical behavior. Lüders band is fully removed by the early stress-induced martensitic transformation.  相似文献   

15.
Plastic deformation of 304 stainless steel (SS) induces transgranular (TG) carbide precipitation, which is critically dependent on deformation-induced microstructural changes occurring during thermal treatment of the SS. Uniaxial deformation of the 304 SS to 40% strain produces a high density of intersecting micro-shear bands composed of heterogeneous bundles of twin-faults and about 12–17% strain-induced α′-martensite at the intersections of the twin-faults. Thermal treatment of 670°C for 0.1–10 h, however, results in a rapid annihilation/transformation of the strain-induced martensite and the concurrent formation of zones containing mixed thermal martensite laths and fine-grained austenite, though the thermal martensite also decreases with increasing heat treatment time. Simultaneous with these thermomechanically-induced microstructural changes, TG chromium-rich carbides form at intersections of twin-faults and on fine-austenite or thermal martensite boundaries in the SS; however, no correlation between strain-induced α′-martensite and carbides was observed in this work. The mechanisms of deformation-induced microstructure and (strain-induced and thermal) martensite effects on TG carbide precipitation in 304 SS are discussed.  相似文献   

16.
The high-temperature austenite phase of a high-interstitial Mn- and Ni-free stainless steel was stabilized at room temperature by the full dissolution of precipitates after solution annealing at 1523 K (1250 °C). The austenitic steel was subsequently tensile-tested in the temperature range of 298 K to 503 K (25 °C to 230 °C). Tensile elongation progressively enhanced at higher tensile test temperatures and reached 79 pct at 503 K (230 °C). The enhancement at higher temperatures of tensile ductility was attributed to the increased mechanical stability of austenite and the delayed formation of deformation-induced martensite. Microstructural examinations after tensile deformation at 433 K (160 °C) and 503 K (230 °C) revealed the presence of a high density of planar glide features, most noticeably deformation twins. Furthermore, the deformation twin to deformation-induced martensite transformation was observed at these temperatures. The results confirm that the high tensile ductility of conventional Fe-Cr-Ni and Fe-Cr-Ni-Mn austenitic stainless steels may be similarly reproduced in Ni- and Mn-free high-interstitial stainless steels solution annealed at sufficiently high temperatures. The tensile ductility of the alloy was found to deteriorate with decarburization and denitriding processes during heat treatment which contributed to the formation of martensite in an outermost rim of tensile specimens.  相似文献   

17.
Grain refinement efficiency of electropulsing treatment(EPT)for metastable austenitic manganese steel was investigated.The mean grain size of original austenite is 300μm.However,after EPT,the microstructure exhibits a bimodal grain size distribution,and nearly 70vol.%grains are less than 60μm.The refined austenite results in ultrafine martensitic microstructure.The tensile strengths of refined austenitic and martensitic microstructures were improved from 495to 670,and 794to 900MPa respectively.The fine grained materials possess better fracture toughness.The work-hardening capacity and wear resistance of the refined austenitic microstructure are improved.The reasonable mechanism of grain refinement is the combination of accelerating new phase nucleation and restraining the growth of neonatal austenitic grain during reverse transformation and rapid recrystallization induced by electropulsing.  相似文献   

18.
We have used the recently adopted concept of phase reversion to obtain grain size from the nanograined/ultrafine-grained (NG/UFG) to fine grain (FG) regime by varying temperature?Ctime annealing sequence of cold deformed metastable austenite. The phase-reversion induced NG/UFG structure was characterized by high strength-high ductility combination. The concept of phase reversion involves severe cold deformation of metastable austenite to generate strain-induced martensite. Upon annealing, martensite transforms back to austenite through a diffusional reversion mechanism with NG/UFG, sub-micron grains (SMG) or FG structure, depending on the annealing condition. Depth-sensing nanoindentation experiments were combined with electron microscopy to elucidate the dependence of grain size from nanograin/ultrafine-grain (NG/UFG) to coarse grain (CG) regime on the deformation mechanisms. There was distinct transition in the deformation mechanism from intense mechanical twinning and stacking faults in NG/UFG structure to strain-induced martensite formation at the intersection of shear bands in the CG structure. The transition in the deformation mechanism is discussed in terms of increase in austenite stability with decrease in grain size.  相似文献   

19.
Stress-Assisted and strain-induced martensites in FE-NI-C alloys   总被引:3,自引:0,他引:3  
A metallographic study was made of the martensite formed during plastic straining of metastable, austenitic Fe-Ni-C alloys withM s temperatures below 0°C. A comparison was made between this martensite and that formed during the deformation of two TRIP steels. In the Fe-Ni-C alloys two distinctly different types of martensite formed concurrently with plastic deformation. The large differences in morphology, distribution, temperature dependence, and other characteristics indicate that the two martensites form by different transformation mechanisms. The first type, stress-assisted martensite, is simply the same plate martensite that forms spontaneously belowM s except that it is somewhat finer and less regularly shaped than that formed by a temperature drop alone. This difference is due to the stress-assisted martensite forming from cold-worked austenite. The second type, strain-induced martensite, formed along the slip bands of the austenite as sheaves of fine parallel laths less than 0.5μm wide strung out on the {111}γ planes of the austenite. Electron diffraction indicated a Kurdjumov-Sachs orientation for the strain-induced martensite relative to the parent austenite. No stress-assisted, plate martensite formed in the TRIP steels; all of the martensite caused by deformation of the TRIP steels appeared identical to the strain-induced martensite of the Fe-Ni-C alloys. It is concluded that the transformation-induced ductility of the TRIP steels is a consequence of the formation of strain-induced martensite. Formerly a graduate student at Stanford University  相似文献   

20.
The structure and mechanical properties of austenitic 08KhN10T steel subjected to equal-channel angular pressing (ECAP) at room temperature (? = 3.2) and subsequent heating are studied. In the course of ECAP, the steel undergoes a martensitic transformation; the martensite content reaches 45%. Upon heating, martensite (ferrite) transforms into austenite. The partly submicrocrystalline oriented structure of the 08Kh18N10T steel in the austenitic (55%)-martensitic (45%) state (formed upon ECAP) provides its high strain hardening (σ0.2 = 1315 N/mm2), as compared to the initial state (σ0.2 = 250 N/mm2), and high plasticity δ = 11%. After heating to 550°C, the steel has a predominantly submicrocrystalline austenitic (80%)-ferritic (20%) structure, σ0.2 = 1090 N/mm2, and δ = 11%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号