首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ordered mesoporous carbon is synthesized by the organic–organic self-assembly method with novolac as carbon precursor and two kinds of triblock copolymers (Pluronic F127 and P123) as template. The hexagonal structure and a worm-hole structure are observed by TEM. The carbonization temperature is determined by TG and FT-IR. Characterization of physical properties of mesoporous carbon is executed by N2 absorption–desorption isotherms and XRD. The mass ratios of carbon precursor/template affect the textural properties of mesoporous carbon. The mesoporous carbon with F127/PF of 1/1 has lager surface area (670 m2 g?1), pore size (3.2 nm), pore volume (0.40 cm3 g?1), smaller microporous surface area (368 m2 g?1) and wall thickness (3.7 nm) compare to that with F127/PF of 0.5/1 (576 m2 g?1, 2.7 nm, 0.29 cm3 g?1, 409 m2 g?1 and 4.3 nm, respectively). The mesoporous carbon prepared by carbonization at high temperature (700 °C) exhibits lager surface area, lower pore size and pore volume than the corresponding one obtained at 500 °C. The structure and order of the resulting materials are notably affected with types of templates. The mesoporous carbon with P123 as template exhibits worm-hole structure compare to that with F127 as template with hexagonal structure. In general, the pore size of mesoporous carbon with novolac as precursor is smaller than that with resorcinol–formaldehyde as precursor.  相似文献   

2.
《分离科学与技术》2012,47(7):984-992
Incorporation of humic acid in the FDU-1 mesoporous silica improved Hg(II) adsorption and did not destroy the ordered network, providing surface area of 500 m2 g?1, pore volume of 0.9 cm3 g?1, and mean pore diameter of 10 nm. Carboxylic and phenolic groups increased the affinity by forming surface complexes with Hg(II). Isotherms (25.0 ± 0.1°C) were fitted to the Freundlich equation, exhibiting Kf values that increased with pH and 1/n that decreased to values < 1 with the heterogeneity of sites. Hg(II) desorption in 0.10 mol L?1 acetic acid was lower than 10%, suggesting that chemisorption processes govern the Hg(II) removal.  相似文献   

3.
This work proposed a synthesis route of ZSM‐5 via the hydrothermal method with premixing in a stirred tank reactor (STR). Effects of various operating conditions, including pre‐mixing time, molar ratio of SiO2/Al2O3, TPAOH (organic template agents) concentration, NaCl (alkali metal cations) concentration, crystallization temperature, and crystallization reaction time, on the average particle size (PS) and particle size distribution (PSD) were investigated. It was found that the pre‐mixing time in the STR significantly affect the formation of proto‐nuclei in premixing process and crystal growth in hydrothermal reaction process, and consequently influence the PS and PSD of the prepared ZSM‐5. ZSM‐5 with good thermal stability, a PS of 380 nm, PSD of 0.17–0.9 µm, pore diameter of 2.31 nm, pore volume of 0.19 cm3 · g?1 and specific surface area of 337.25 m2 · g?1 were obtained under the optimal conditions of a crystallization reaction time of 24 h, a crystallization temperature of 130 °C, a molar ratio of SiO2/Al2O3 of 200, a TPAOH concentration of 3.5 mol · L?1, NaCl concentration of 0.3 mol · L?1, and a pre‐mixing time of 5 h. This work indicated that the operating conditions including premixing time have a significant effect on its PS and PSD.  相似文献   

4.
Morphological and photovoltaic stabilities of poly(3‐hexylthiophene) (P3HT):phenyl‐C61‐butyric acid methyl ester (PC71BM) solar cells were investigated in pristine and modified states. To this end, four types of patterned/assembled nanostructures, namely reduced graphene oxide (rGO)‐g‐poly(3‐dodecylthiophene)/P3HT patched‐like pattern, rGO–polythiophene/P3HT/PC71BM nanofiber, rGO‐g‐P3HT/P3HT cake‐like pattern and supra(polyaniline (PANI)‐g‐rGO/P3HT), were designed on the basis of rGO and various conjugated polymers. Intermediately covered rGO nanosheets by P3HT crystals (supra(PANI‐g‐rGO/P3HT)) performed better than sparsely (patched‐like pattern) and fully (cake‐like pattern) covered ones in P3HT:PC71BM solar cell systems. Supra(PANI‐g‐rGO/P3HT) nanohybrids largely phase‐separated in active layers (root mean square = 0.88 nm) and also led to the highest performance (power conversion efficiency of 5.74%). The photovoltaic characteristics demonstrated decreasing trends during air aging for all devices, but with distinct slopes. The steepest decreasing plots were obtained for the unmodified P3HT:PC71BM devices (from 1.77% to 0.28%). The two supramolecules with the most ordered structures, that is, cake‐like pattern (10.12 mA cm?2, 51%, 0.58 V, 2.2 × 10?6 cm2 V?1 s?1, 4.3 × 10?5 cm2 V?1 s?1, 0.69 nm and 2.99%) and supra(PANI‐g‐rGO/P3HT) (12.51 mA cm?2, 57%, 0.63 V, 1.2 × 10?5 cm2 V?1 s?1, 3.4 × 10?4 cm2 V?1 s?1, 0.82 nm and 4.49%), strongly retained morphological and photovoltaic stabilities in P3HT:PC71BM devices after 1 month of air aging. According to the morphological, optical, photovoltaic and electrochemical results, the supra(PANI‐g‐rGO/P3HT) nanohybrid was the best candidate for stabilizing P3HT:PC71BM solar cells. © 2020 Society of Chemical Industry  相似文献   

5.
In this paper, nanoporous nickel phosphate VSB-5 nanorods was synthesized with microwave irradiation and hydrothermal treatment and characterized by X-ray diffraction, FT-IR spectroscopy, Filed emission scanning electron microscopy (FESEM) and EDS analysis. FESEM technique exhibited the presence of nickel phosphate nanorods morphology. The BET surface area, total pore volume and average pore diameter of synthesized nickel phosphate were obtained to be 102.5 m2 g?1, 0.14 cm3 g?1 and 3.6 nm, respectively. Carbon paste electrode (CPE) was modified by VSB-5 nanorods and then Ni2+ ions incorporated to this electrode to obtain Ni-VSB-5/CPE. The current intensity of glucose oxidation increases impressively on the surface of Ni-VSB-5/CPE and modified CPE can reduce the overvoltage of glucose oxidation in comparison with Ni-CPE. The values of electron transfer coefficient, diffusion coefficient and mean value of catalytic rate constant for glucose and redox sites of electrode were found to be 0.87, 6.18 × 10?4 cm2 s?1 and 3.06 × 105 cm3 mol?1 s?1, respectively. The good catalytic activity, high sensitivity, good selectivity and stability and ease of preparation rendered the Ni-VSB-5/CPE to be a capable electrode for glucose electro-oxidation.  相似文献   

6.
《分离科学与技术》2012,47(9):2132-2145
Abstract

MgAl2O4 nanopowder has been prepared by alkoxides hydrolysis with further calcination at temperature of 700°C. The adsorption of a leather dye, Direct Black 38, onto this material was investigated. The sample was characterized by X-ray-diffraction (XRD), N2 adsorption–desorption isotherm and Fourier transform infrared spectroscopy. The results showed that sample present a pure phase, and the average nanocrystal size of 8 nm, the BET surface area is about 206.5 m2 · g?1 and total pore volume is about 1.44 cm3 · g?1. Adsorption kinetics data were modeled by film and pore diffusion model. The experimental isotherm was described by the Langmuir model. MgAl2O4 nanopowder presented a great removal efficiency of leather dye by adsorption process, with a maximum adsorption capacity of 833 mg of dye per gram of adsorbent.  相似文献   

7.
In this study zirconium incorporated Cr3C2-(NiCr) coating has been sprayed on three superalloys viz. Superni 718, Superni 600 and Superco 605 using D-gun technique. A comparative study has been carried out to check the cyclic oxidation in air and hot corrosion in simulated incinerator environment (40%Na2SO4-40%K2SO4-10%NaCl-10%KCl) for the coated specimens at 900 °C for 100 cycles. Oxidation kinetics has been established for all the specimens using weight change measurements. Corrosion products have been characterized using X-ray diffractometer (XRD) and scanning electron microscopy/energy-dispersive analysis (SEM/EDAX). Cr3C2-(NiCr) + 0.2%wtZr coating provides very good corrosion resistance in air oxidation for all the three coated superalloys. As all the three coated superalloys shows parabolic behaviour with parabolic rate constant as 0.07 × 10?10 (g2 cm?4 s?1) for Superni 718, 0.43 × 10?10 (g2 cm?4 s?1) for Superni 600 and 0.3 × 10?10 (g2 cm?4 s?1) for Superco 605 This coating is also effective in the molten salt environment but coating on Co-based superalloy Superco 605 did not perform satisfactorily. The parabolic rate constants for coated Superni 718 is 0.61 × 10?10 (g2 cm?4 s?1), for coated Superni 600 is 6.72 × 10?10 (g2 cm?4 s?1) and for coated Superco 605 is 17.5 × 10?10 (g2 cm?4 s?1).  相似文献   

8.
The kinetics of the adsorption of various dyestuffs onto chitin have been studied. The dyestuffs used are Neoland Blue 2G, Eriochrome Flavine A, and Solophenyl Brown 3RL and a number of process variables were considered, such as adsorbent mass and dye concentration. The mass transfer model is based on the assumption of a pseudoirreversible isotherm and two resistances to mass transfer. These are external mass transfer and internal pore diffusion mass transfer. The rate of adsorption of dyestuffs onto chitin can thus be described by an external mass transfer coefficient and a pore diffusion coefficient. The external mass transfer coefficients are 5.0 × 10?5, 5.0 × 10?5, and 1.0 × 10?5 m·s?1 and the pore diffusivities are 3.0 × 10?10 and 4.0 × 10?11 m2·s?1 for Neolan Blue 2G, Eriochrome Flavine A, and Solophenyl Brown 3RL, respectively.  相似文献   

9.
Proper disposal of nuclear waste with multi-nuclides and multi-valence is still challenge. A series of (Mo, Ru, Pd, Zr) tetra-doped Gd2Zr2O7 ceramics were studied to understand the microstructure and performance evolution of nuclear waste forms that immobilised simulated waste after trialkyl phosphine oxides (TRPO) process. The structure of as-obtained samples were tested by X-ray diffraction, Raman, scanning electron microscope, electron back-scattered diffraction, and energy-dispersive X-ray spectroscopy, while the mechanical and chemical performance were characterised by Vickers hardness and aqueous leaching method. The results indicate that the mechanical behaviour are closely linked with the phase structure, and the highest Vickers hardness is obtained at the phase turning point. The leaching results show that the normalised leaching rate (LR) of the doped elements decrease in the order of Mo, Ru, Pd, Zr. After reaching equilibrium, their LR are as low as 4.12?×?10?4?g·m?2·d?1, 1.50?×?10?5?g·m?2·d?1, 1.30?×?10?5?g·m?2·d?1, and 2.09?×?10?7?g·m?2·d?1, respectively.  相似文献   

10.
Diatomite, because it is inherently porous and irregular, presents an interesting opportunity to investigate how the processing conditions of green bodies and the incorporation of spherical pores affect the final properties of a sintered ceramic filter. The water flux of a diatomite filter sintered at 1200°C was 6·3×104 L m?2 h?1 bar?1, which is higher than the water fluxes of typical ceramic filters such as spherical fly ash (1·6×104 L m?2 h?1 bar?1), γ-alumina (~1·0×103 L m?2 h?1 bar?1) and zirconia (1·6×103 L m?2 h?1 bar?1) filters. The results obtained in this study show that the pressure applied during the processing of green bodies and the incorporation of spherical pores directly affect pore characteristics and accordingly determine the permeability of the sintered diatomite filters.  相似文献   

11.
Van der Sluis et al.'s model was used to determine the rate of the partial dissolution of a Tunisian phosphate rock with dilute phosphoric acid (1.5 mass% P2O5). When the temperature rises from 25 to 90°C, for a given particle size, the mass-transfer coefficients, kL°, vary from 3 × 10?3 to 8 × 10?3 m ·s?1. The corresponding diffusion coefficients, D, lies between 6 × 10?7 and 27 × 10?7 m2·s?1. Activation energy is equal to 14 kJ·mol?1 and values of kL°, at 25°C, are in the range of 0.28 × 10?3 and 4 × 10?3 m·s?1 when the agitation speed goes from 220 to 1030 rpm, showing that the leaching process is controlled by diffusion rather than by chemical reaction.  相似文献   

12.
Cherry stones are utilized as a precursor for the preparation of activated carbons by chemical activation with phosphoric acid (H3PO4). The activation process typically consists of successive impregnation, carbonization, and washing stages. Here, several impregnation variables are comprehensively studied, including H3PO4 concentration, number of soaking steps, H3PO4 recycling, washing of the impregnated material, and previous semi-carbonization. The choice of a suitable impregnation methodology opens up additional possibilities for the preparation of a wide variety of activated carbons with high yields and tailored porous structures. Microporous activated carbons with specific surface areas of ~800 mg?1 are produced, in which > 60% of the total pore volume is due to micropores. High surface areas of ~1500 m2 g?1 can be also developed, with micropore volumes being a 26% of the total pore volume. Interestingly, using the same amount of H3PO4, either carbons with surface areas of 791 and 337 m2 g?1 or only one carbon with a surface area of 640 m2 g?1 can be prepared. The pore volumes range very widely between 0.07–0.55, 0.01–0.90, and 0.09–0.79 cm3 g?1 for micropores, mesopores, and macropores, respectively.  相似文献   

13.
Polycrystalline Mo4Y2Al3B6 ceramic (92.84 wt% Mo4Y2Al3B6 and 7.16 wt% MoB) was prepared by spark plasma sintering at 1250 ℃ under 30 MPa using Mo, Y, Al, and B as starting materials. The dense sample obtained has a high relative density of 96.6 %. The average thermal expansion coefficient is 8.38 × 10?6 K?1 in the range of 25–1000 ℃. The thermal diffusivity decreases from 6.50 mm2/s at 25 °C to 4.33 mm2/s at 800 °C. The heat capacity, thermal conductivity, and electrical conductivity are 0.30 J·g?1·K?1, 11.73 W·m?1·K?1, and 0.66 × 106 Ω?1·m?1 at 25 °C, respectively. Vickers hardness with increasing load in the range of 10–300 N at room temperature decreases from 10.82 to 9.49 GPa, and the fracture toughness, compressive strength, and flexural strength are 5.14 MPa·m1/2, 1255.14 MPa, and 384.82 MPa, respectively, showing the promising applications as structural-functional ceramics.  相似文献   

14.
Rare earth elements are an important strategic resource. However, a trace of Fe(III) impurity has serious adverse impact on the performance of rare earth materials. We synthesized a novel nitrogen-containing carbon material, ACLR-400, using lotus root as raw materials. The ACLR-400 was characterized by surface area analyzer, elemental analysis and FT-IR. The selectivity and removal efficiency of ACLR-400 towards Fe(III) were also investigated. The BET specific surface area of ACLR-400 was 68.44 m2·g?1, and the average pore diameter was 12.54 nm. With abundant nitrogen- containing functional groups and well-developed internal pore structure, ACLR-400 possesses strong adsorption affinity, excellent selectivity and removal efficiency for Fe(III). The adsorption capacity of ACLR-400 towards Fe(III) could reach to 0.46 mmol·g?1, selectivity coefficient with respect to La(III) was 8.9, and removal efficiency was 99.61%. The adsorption isotherm data greatly obey the Freundlich isotherm. In addition, ACLR-400 can be regenerated easily and possesses better regeneration ability and reusability.  相似文献   

15.
High surface area aluminum containing spherical mesocellular silica foams (SMCFs) with ultra-large pore volume and 3D pore size were successfully synthesized through a simple hydrothermal route, and the as-synthesized aluminum containing SMCFs (Al-SMCFs) was applied as the support of NiMo-base catalyst for the hydrodesulfurization (HDS) of fluid catalytic cracking (FCC) diesel. The as-synthesized supports and corresponding catalysts were characterized by powder small X-ray diffraction, nitrogen physisorption, scanning electron microscopy, transmission electron microscopy (TEM), inductively coupled plasma optical emission spectroscopy, and temperature-programmed reduction with H2. The characterization results showed that, compared with other prepared catalysts (NiMo/Al-SBA-15 and NiMo/Al-KIT-6), the NiMo/Al-SMCFs catalyst possessed the most optimal physicochemical parameters, i.e., ultra-large 3D pore size (42.0 nm), high surface area (330.1 m2·g?1), and ultra-large pore volume (1.96 cm3·g?1), resulting in the formation of more homogeneous distribution of octahedral Mo active species and good mass transfer performance. Consequently, the NiMo/Al-SMCFs catalyst displayed the outstanding HDS performance (98.8%) of FCC diesel, confirming that the Al-SMCFs may be a type of promising candidate for oil hydrotreating.  相似文献   

16.
Eucalyptus sawdust was used as a precursor to prepare activated carbon using NaOH as a chemical activation agent. The effect of preparation conditions on the characteristics of the produced activated carbon used as an adsorbent was investigated. The performance of the activated carbon was characterized by N2 adsorption–desorption isotherms, Brunauer–Emmett–Teller equation, Barett–Joyner–Halenda equation, scanning electron microscopy and Fourier transform infrared analysis. When the eucalyptus sawdust mass was 30.00 g, with particle sizes between 0.25 and 0.42 mm, and the sawdust was heated and charred before activation by NaOH, the optimized conditions for the preparation of activated carbon was found to be as follows: mass ratio of NaOH to eucalyptus sawdust, 1:2; activation time, 30 min; and activation temperature, 700 °C. The Iodine number and BET surface area of the produced activated carbon was 899 and 1.12 × 103 m2 g?1, respectively, with a 13.3 % yield. Activated carbon exhibits adsorption isotherms of type IV. The total pore volume, micropore volume and average pore diameter were recorded as 0.636, 0.160 cm3 g?1 and 2.27 nm, respectively. The pore structure of the activated carbon is mainly mesoporous. Carbonyl and hydroxyl groups may also exist on the activated carbon surface.  相似文献   

17.
Four different fluorinated surfactant-based systems were used as template for the synthesis of highly ordered TiO2 mesoporous materials with large-pore wormhole structures. The calcined materials exhibit large pore diameters (up to 5.9 nm), high surface areas (900–1,180 mg?1), pore volumes (0.90–1.25 cmg?1) and thick pore walls (4.6–7.7 nm) depending of the synthesis route. It is established that the self-aggregation behavior of fluorinated amphiphile systems can be manipulate and provides a rich phase behavior to obtain well-organized titania sieves with adjustable pore size and surface topography. By comparison to titania and silica sieves obtained by the same procedure, it can be established that there is a deep interaction between head groups of fluorinated surfactants and Ti(IV)(iPrO)4 showing that the inorganic precursor has a great influence on the properties of the final materials.  相似文献   

18.
D.R. Dugwell  P.J. Foster 《Carbon》1973,11(5):455-467
The rates of deposition of carbon on alumina surfaces and on soot particles, have been measured in a pilot scale tubular reactor in which cold methane was mixed with combustion products at 1920°K. A hard grey metallic film of carbon, quite free of soot, was deposited on alumina surfaces for initial methane concentrations between 12 and 24 per cent. An induction period of slow growth rate, before a film covered the surface completely, was followed by a constant growth rate. Measured growth rates were from 0·06 × 10?6 to 1·43 × 10?6 g/cm2 sec of carbon on alumina at 1270°K to 1450°K, and from 0·1 × 10?4 to 1·14 × 10?4 g/cm2 sec on soot particles at 1370°K to 1700°K. Methane decomposition rates were much higher than predicted by the unimolecular mechanism indicating a predominance of radical reactions. Carbon deposition rates were related to the mole fraction, χ, of hydrocarbons in the gas which bear more than three carbon atoms per molecule, by, m?f = 1·0 × 102 n.χ. exp (?42,300/RTf), g/cm2sec for carbon film, m?s = 4·6 × 103 exp (? 46,100/RTg), g/cm2 sec for soot. A precoat of soot increased the growth rate of film carbon by 1·8 to 7·8 times yielding a hard adherent dull brown film  相似文献   

19.
Nanosized chromium (Cr2O3) oxide was prepared by the common thermal decomposition of Cr(NO3)3·9H2O chromium (III) nitrate nonahydrate. Prior to the heat treatment at 550 °C, the commercial reagent was first dissolved in a colloidal silica solution and then dried at a low temperature to slowly evaporate the aqueous solvent. The SiO2/Cr(NO3)3·9H2O weight ratio (R) was changed from 0 to 2. The various Cr2O3 powders were characterized by XRD, FTIR, nitrogen adsorption, SEM and TEM techniques. A maximum specific surface area of 113 m2 g?1, associated with a pore volume of 0.72 cm3 g?1, was obtained for the Cr2O3 powder prepared with R = 2. These pristine chromium oxide nanoparticles, with a slightly sintered sphere-shaped morphology, exhibited a 10 nm particle size with a monocrystalline character as demonstrated by the TEM and XRD correlation.  相似文献   

20.
Mesoporous nickel cobaltite (NiCo2O4) nanoparticles were synthesized via a hydrothermal and soft-templating method through quasi-reverse-micelle mechanism. The physicochemical properties of the NiCo2O4 materials were characterized via X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectra, and nitrogen sorption isotherms measurements. The electrochemical performances of the NiCo2O4 electrode were investigated by cyclic voltammetry, chronopotentiometry, and electrochemical impedance spectroscopy tests. The obtained NiCo2O4 materials exhibit typical mesoporous structures, with an average particle size of about 200 nm, a specific surface area of 88.63 m2 g?1, and a total pore volume of 0.337 cm3 g?1. The facile electrolytes penetration for the mesoporous structures favors high-performance of the NiCo2O4 electrode. The NiCo2O4 electrode shows a high specific capacitance (591 F g?1 at 1 A g?1), high-rate capability (248 F g?1 at 20 A g?1), and a good cycling behavior for tested 3,000 cycles, indicating a promising application for electrochemical capacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号