首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of modified porous glasses with a fixed europium content Q(Eu3+) = 30 μmol/g and a variable titanium oxide content Q(TiO2) = 15–375 μmol/g are synthesized. The luminescence properties of the prepared glasses are investigated as a function of the component ratio in the composition of oxide nanoparticles. The specific features of the luminescence quenching in a wet medium are analyzed. It is shown that titanium(IV) oxide substantially sensitizes the photoluminescence of Eu3+ ions and shields them against the water adsorption.  相似文献   

2.
This study considers the feasibility of uptake of cephalexin, an emerging contaminant, from aqueous solutions by using green local montmorillonite (GLM), montmorillonite coated with ZnO (ZnO/GLM) and montmorillonite coated with TiO2 (TiO2/GLM) in the presence of H2O2. Batch adsorption experiments were carried out as a function of pH, initial concentration of the cephalexin, adsorbent dosage, contact time, and temperature. Finally, the adsorbents were characterized by XRD, SEM and FTIR analyses. XRD patterns showed dramatic changes in the adsorbents after loading with the nanoparticles, confirming successful placing of the nanoparticles onto GLM. The GLM mineral surface after nanoparticle loading appears to be fully exposed and more porous with irregular shapes in particles diameters of 1-50 microns. FTIR analyses also confirmed dramatic changes in surface functional groups after modification with these nanoparticles. The results showed that the removal efficiency of cephalexin was better at lower pH values. Totally, the removal efficiency increased with increase in adsorbent dosage and contact time and decreased with concentration and temperature increase. The thermodynamics values of ΔG o and ΔH o revealed that the adsorption process was spontaneous and exothermic. In isotherm study, the maximum adsorption capacities (qm) were obtained to be 7.82, 17.09 and 49.26 mg/g for GLM, ZnO/GLM and TiO2/GLM, respectively. Temkin constant (B T ) showed that adsorption of cephalexin from solution was exothermic for all three adsorbents.  相似文献   

3.
Good sorption properties and simple synthesis route make schwertmannite an increasingly popular adsorbent. In this work, the adsorption properties of synthetic schwertmannite towards Cr(VI) were investigated. This study aimed to compare the properties and sorption performance of adsorbents obtained by two methods: Fe3+ hydrolysis (SCHA) and Fe2+ oxidation (SCHB). To characterise the sorbents before and after Cr(VI) adsorption, specific surface area, particle size distribution, density, and zeta potential were determined. Additionally, optical micrographs, SEM, and FTIR analyses were performed. Adsorption experiments were performed in varying process conditions: pH, adsorbent dosage, contact time, and initial concentration. Adsorption isotherms were fitted by Freundlich, Langmuir, and Temkin models. Pseudo-first-order, pseudo-second-order, intraparticle diffusion, and liquid film diffusion models were used to fit the kinetics data. Linear regression was used to estimate the parameters of isotherm and kinetic models. The maximum adsorption capacity resulting from the fitted Langmuir isotherm is 42.97 and 17.54 mg·g−1 for SCHA and SCHB. Results show that the adsorption kinetics follows the pseudo-second-order kinetic model. Both iron-based adsorbents are suitable for removing Cr(VI) ions from aqueous solutions. Characterisation of the adsorbents after adsorption suggests that Cr(VI) adsorption can be mainly attributed to ion exchange with SO42 groups.  相似文献   

4.
We investigated the utilization of ash and modified ash as a low-cost adsorbent to remove copper ions from aqueous solutions such as wastewater. Batch experiments were conducted to determine the factors affecting adsorption of copper. The influence of pH, adsorbent dose, initial Cu2+ concentration, type of adsorbent and contact time on the adsorption capacity of Cu2+ from aqueous solution by the batch adsorption technique using ash and modified ash as a low-cost adsorbent were investigated. The optimum pH required for maximum adsorption was found to be 5. The results from the sorption process showed that the maximum adsorption rate was obtained at 300 mg/L when a different dosage of fly ash was added into the solution, and it can be concluded that decreasing the initial concentration of copper ion is beneficial to the adsorption capacity of the adsorbent. With the increase of pH value, the removal rate increased. When the pH was 5, the removal rate reached the maximum of over 99%. When initial copper content was 300 mg/L and the pH value was 5, the adsorption capacity of the zeolite Z 4 sample reached 27.904 mg/g. The main removal mechanisms were assumed to be the adsorption at the surface of the fly ash together with the precipitation from the solution. The adsorption equilibrium was achieved at pH 5 between 1 and 4 hours in function of type of adsorbent. A dose of 1: 25 g/mL of adsorbent was sufficient for the optimum removal of copper ions. For all synthesized adsorbents the predominant mechanism can be described by pseudo-second order kinetics.  相似文献   

5.
Silica aerogel surface modifications with chelating agents for adsorption/removal of metal ions have been reported in recent years. This investigation reported the preparation of silica aerogel (SA) adsorbent coupled with metal chelating ligands of 4-amino-5-methyl-1,2,4-triazole-3(4H)-thion (AMTT) and its application for selective adsorption of Hg(II) ion. The adsorbent was characterized by Fourier transform infrared spectra (FTIR) and thermo gravimetric analysis (TGA) measurements, nitrogen physisorption and scanning electron microscope (SEM). Optimal experimental conditions including pH, temperature, adsorbent dosage and contact time have been established. Langmuir and Freundlich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data given by the Langmuir isotherm equation and the maximum adsorption capacity of the modified silica gel and silica aerogel was 142.85 and 17.24mgg?1, respectively. Thermodynamic parameters such as Gibbs free energy (ΔG o ), standard enthalpy (ΔH o ) and entropy change (ΔS o ) were investigated. The adsorbed Hg(II) on the SA-AMTT adsorbents could be completely eluted by 1.0M KBr solution and recycled at least four times without the loss of adsorption capacity. The results of the present investigation illustrate that modified silica aerogel with AMTT could be used as an adsorbent for the effective removal of Hg(II) ions from aqueous solution.  相似文献   

6.
Decontamination of high-level Fe3+ ions from a model aqueous solution using natural inorganic Quartz (NQ) and Bentonite (NB) has been studied. The adsorption equilibrium studies are performed with a constant initial Fe3+ ion concentrations (namely 100, 200, 300 and 400 mg.L-1) and varying adsorbent weight. The adsorption percentages of Fe3+ ions increase sharply by increasing adsorbent doses, in which the adsorption percentage of Fe3+ using NB (approx. 60%) is found higher than in case of NQ (approx. 40%) in whole adsorption dosages. The maximum adsorption percentages of Fe3+ using both adsorbents are achieved within the first 60 minuets, and then desorption process is taken place. As the initial concentration of ions increases the percentage removal using NB decreases, while the adsorption using NQ is less affected by the initial concentration; it is found 40% in whole different initial concentration (50 - 400 mg.L-1). The best temperature for the maximum adsorption is found 30 - 40°C for both adsorbents. The obtained experimental data has well described by Freundlich isotherm model into both NQ and NB. The Freundlich constant Kf for the adsorption of Fe3+ using NB is greater than using of NQ for the initial concentration 400 mg.L-1. The negative value of ?G° confirms the feasibility of the process and the spontaneous nature of adsorption with a high preference for metal ions to adsorb onto NB (ΔG° = -13.9) more easily than NQ (ΔG° = -13.4).  相似文献   

7.
Removal of heavy metals from water and wastewaters has recently gained a great deal of attention due to their serious environmental problems. In this study, novel synthesized calcium carbonate nanoparticles, prepared in a colloidal gas aphron (CGA) system, were used as adsorbents for the removal of Cu2+ ions from aqueous solutions under different conditions. A developed pseudo-second-order (PSO) model well described the adsorption kinetics of the process. Langmuir and Freundlich adsorption isotherms have been examined and the maximum adsorption capacity from the Langmuir isotherm equation was found to be 666.67?mg Cu/g adsorbent. The effects of temperature, Cu2+ initial concentration, and CaCO3 dosage on the removal capacity were also investigated using the three-level Box–Behnken experimental design method. The response surface modeling results demonstrated that under certain experimental conditions (i.e., T?=?26°C, [Cu2+]?=?200?mg/L, and [CaCO3]?=?0.5?g/L), maximum removal capacity value (393.52?mg/g) was achieved.  相似文献   

8.
Three novel magnetic adsorbents were synthesized through the immobilization of di-, tri-, and tetraamine onto the surface of silica coated magnetite nanoparticles. The adsorbents were characterized by XRD patterns, FTIR spectroscopy, elemental and thermogravimetric analysis, magnetic measurements, SEM/TEM, EDX spectroscopy, and N2 adsorption/desorption isotherms. Their capacity to remove copper ions from aqueous solutions was investigated and discussed comparatively. The equilibrium data were analyzed using Langmuir and Freundlich isotherms. The kinetics was evaluated using the pseudo-first-order, pseudo-second-order, and intra-particle diffusion models. The best interpretation for the equilibrium data was given by the Langmuir isotherm for the tri- and tetraamine functionalized adsorbents, while for the diamine functionalized adsorbent the Freundlich model seemed to be better. The kinetic data were well fitted to the pseudo-second-order model. The overall rate of adsorption was significantly influenced by external mass transfer and intraparticle diffusion. It was observed that the adsorption capacity at room temperature decreased as the length of polyamine chain immobilized on the adsorbent surface increased, the maximum adsorption capacities being 52.3 mg g?1 for 1,3-diaminopropan functionalized adsorbent, 44.2 mg g?1 for diethylenetriamine functionalized adsorbent, and 39.2 mg g?1 for triethylenetetramine functionalized adsorbent. The sorption process proved to be highly dependent of pH. The results of the present work recommend these materials as potential candidates for copper removal from aqueous solutions.  相似文献   

9.
Halloysite nanotubes (HNTs) were modified with Fe3O4 to form novel magnetic HNTs-Fe3O4 composites, and the composites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometer (VSM). The as-obtained results indicated that Fe3O4 nanoparticles were successfully installed on the surface of HNTs. The adsorption of UO 2 2+ on HNTs-Fe3O4 was investigated as a function of solid content, contact time, pH, ionic strength and temperature by batch experiments. The consequences revealed that the adsorption of UO 2 2+ onto HNTs-Fe3O4 was strongly dependent on pH and ionic strength. Equilibrium data fitted well with the Langmuir isotherm. The experimental results demonstrated that the adsorbents with HNTs-Fe3O4 had the largest adsorption capacity of 88.32 mg/g for UO 2 2+ .  相似文献   

10.
Polyaniline (PANI) was synthesized chemically, and then modified with magnetic iron oxide nanoparticles (Fe3O4 NPs). PANI and PANI-Fe3O4 NPs were used for removal of uranyl ions (UO22+) from aqueous solutions using a batch system. The synthesized adsorbents were characterized using FT-IR, SEM, BET and XRD techniques. From isotherm investigation, the maximum adsorption capacities (qm) were 150.0 and 108.0 mg g?1 for PANI and PANI-Fe3O4NPs, respectively. The kinetics and equilibrium adsorptions were well-described by the pseudo-second-order kinetic and Langmuir model, respectively. Thermodynamic studies depicted that the adsorption of uranyl ions by PANI is a spontaneous exothermic process and in the case of PANI-Fe3O4 NPs, adsorption process is endothermic; therefore, the spontaneity is controlled by entropy.  相似文献   

11.
Reusability and selective adsorption toward Pb2+ with the coexistence of Cd2+, Co2+, Cu2+ and Ni2+ ions on chitosan/P(2-acrylamido-2-methyl-1-propanesulfonic acid-co-acrylic acid) [CS/P(AMPS-co-AA)] hydrogel, a multi-functionalized adsorbent containing –NH2, –OH, –COOH and –SO3H groups was studied. The CS/P(AMPS-co-AA) was prepared in aqueous solution by a simple one-step procedure using glow discharge electrolysis plasma technique. The reusability of adsorbent in HNO3, EDTA-2Na and EDTA-4Na was investigated in detail. The competitive adsorption of the metal ions at the initial stage was compared between their equal mass concentration and equal molar concentration. In addition, the adsorption mechanism of the adsorbent for adsorption of Pb2+ was also analyzed by XPS. The results showed that the optimum pH of adsorption was 4.8, and time of adsorption equilibrium was about 180 min. Adsorption kinetics fitted well in the pseudo second-order model. The equilibrium adsorption capacities of Pb2+, Cd2+, Co2+, Cu2+, and Ni2+ at pH 4.8 were obtained as 673.3, 358.3, 176.7, 235.0 and 171.7 mg g?1, in their given order. The adsorbent displayed an excellent reusability using 0.015 mol L?1 EDTA-4Na solution as the eluent, and the desorption ratio could not correctly reflect the true characteristics of adsorption/desorption process. Moreover, the adsorbent showed good adsorption selectivity for Pb2+. The molar adsorption capacity at the initial stage with equal molar concentration was more reliable than the mass adsorption capacity during the study of selective adsorption. According to the XPS results, the adsorption of Pb2+ ions by the CS/P(AMPS-co-AA) absorbent could be attributed to the coordination between N atom and Pb2+ and ion-exchange between Na+ and Pb2+.  相似文献   

12.
In order to realize the value-added resource utilization of solid waste, geopolymer particle adsorbents were prepared at low temperatures using silica-aluminum-rich fly ash and steel slag powders as raw materials. In order to investigate the mechanism of their adsorption of dyes and heavy metal ions from wastewater, the effects of steel slag/fly ash ratio, adsorbent dosage, initial concentration of methylene blue (MB) and Cu2+ solution, adsorption time and temperature on the adsorption performance of the fly ash/steel slag-based geopolymer adsorbents were investigated, systematically. Results presented that the adsorption capacities of MB and Cu2+ were 33.30 and 24.15 mg/g, and the removal efficiencies were 99.90% and 96.59% with the dosages of 3 and 4 g/L geopolymer adsorbents (steel slag/fly ash ratio of 20 wt.%), respectively. The adsorption processes of MB and Cu2+ on the adsorbents were in accordance with the proposed pseudo-second-order and Langmuir isotherm models, which mainly included physical and chemical adsorption mechanisms. The adsorption was a spontaneous endothermic process. The fly ash/steel slag-based geopolymer had good removal ability for dyes and heavy metal ions, and it could maintain good adsorption performance after three cycles of regeneration. It had potential application in wastewater treatment.  相似文献   

13.
In this study, L-cystein modified bentonite-cellulose (cellu/cys-bent) nanocomposite was synthesized and characterized by XRD, FTIR, SEM with EDS, TGA, and TEM techniques. In order to optimize the process the effect of various operational parameters such as pH, adsorbent dosage, contact time, and temperature were also investigated. The adsorption experiments were carried out in initial concentrations range of 20-100 mg L?1and the adsorbent affinity for metal ions was found to be in order of Cu2+ > Pb2+ > Cd2+. The optimum pH for adsorption of Cu2+ and Cd2+ was observed at 5 while for Pb2+ it was pH 6. Based on the Langmuir model, the maximum adsorption capacity of Cu2+, Pb2+, and Cd2+ at 50?C was found to be 32.36, 18.52, and 16.12 mg g?1, respectively. The Langmuir isotherm and pseudo-second order model were found to be better fitted than the other isotherms and kinetic models. The results of thermodynamic parameters confirmed the process to be endothermic and spontaneous in nature.  相似文献   

14.
Particulate and fibrous adsorbents with enriched amidoxime groups were synthesized by using a novel monomer N,N′‐dipropionitrile acrylamide. The adsorption properties of amidoximated poly(N,N′‐dipropionitrile acrylamide) [poly(DPAAm)] particles and a nonwoven fabric grafted with the same for UO22+, Pb2+, Cu2+, and Co2+ at high concentrations were investigated by batch process. Metal ion adsorption studies were conducted from metal ion solutions with different initial concentrations (100–1500 ppm). It was shown that particulated amidoximated poly(DPAAm) has higher adsorption capacity than amidoximated nonwoven fabrics for all metal ions, especially for uranyl ions. The results of the adsorption studies showed that the interaction between UO22+ and amidoximated groups agree with the Langmuir‐type isotherm. From the Langmuir equation, the adsorption capacities were found as 400 mg UO22+/g dry amidoximated poly(DPAAm) and 250 mg UO22+/g dry amidoximated graft polymer. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1705–1710, 2004  相似文献   

15.
《分离科学与技术》2012,47(12):1895-1902
Extraction of uranium (UO22+) and thorium (Th4+) from a nitric acid solution into an imidazolium-type ionic liquids (ILs) of 1-alkyl-3-methylimidazolium hexafluorophosphate ([Cnmim][PF6], n = 6 or 8) was carried out using N,N,N′,N′-tetraoctyl-3-oxapentanediamide (TODGA) as an extractant. It was found that the extraction efficiencies of UO22+ and Th4+ ions are higher in comparison with that done in n-dodecane. The extraction mechanism was deduced by the slope analysis and extraction experiment. Transfer of both ions is assumed to proceed predominantly through the neutral solvation mechanism from nitric acid solution into ILs. The UO22+ ion forms a 1:2 complex with TODGA in ILs at lower acidity, and a 1:1 complex in ILs and in n-dodecane at higher acidity. The Th4+ ion forms a 1:2 complex with TODGA in C6mimPF6 IL or a 1:1 complex in C8mimPF6 IL at lower acidity and a 1:1 complex in both ILs, and n-dodecane at higher acidity. Stripping studies were conducted using sodium salt of EDTA as a stripping ligand. The thermodynamics of extracting UO22+ ions and Th4+ ions from a 3 M HNO3 solution was also studied. The results indicated that the extraction reactions are spontaneous and go through an exothermic process.  相似文献   

16.
In this research Zn(OH)2 nanoparticles loaded on activated carbon (Zn(OH)2-NPs-AC) as novel adsorbent and raw multiwalled carbon nanotube (MWCNT) were applied for efficient removal of bromothymol blue (BTB). Both adsorbent has been characterized with different techniques such and SEM, XRD and UV–vis spectrometry. Their size was less than 100 nm. In the removal process the variables are pH, temperature, concentration of BTB, amount of adsorbent and contact time that their influence on removal of BTB was optimized using one at a time approach in batch procedure. Adsorptions of BTB on bath adsorbent depend highly on pH. Following the investigation of temperature effect, the thermodynamic parameters including change in entropy, enthalpy and free Gibbs energy were calculated. For both adsorbents, positive value of enthalpy and negative value of ΔG0 show routine feasibility of adsorption using energy. At optimum value of variables, the removal processes onto both adsorbent have high adsorption capacity for best fitting model Langmuir, i.e. for Zn(OH)2-NP-AC and 150 mg/g for PAC. The adsorption rates were well explained with pseudo second order and interparticle diffusion model. It is expected that there could an increase in the number of reactive sites due to their expected high volume, pore size and high surface area.  相似文献   

17.
Pollution from heavy-metal ions has become a major challenge to the global fight against environmental pollution. Given the availability of various low-cost and environmentally friendly adsorbents, adsorption has become the most efficient technology for the removal of heavy metals from water. In this study, attapulgite (ATP) was directly functionalized by coupling with an aminosilane agent. Analysis showed this maneuver provided a suitable adsorbent for the removal of lead ion (Pb2+) from an aqueous solution. The effects of several parameters including solution pH, contacting time, adsorbent dosage, and initial Pb2+ ion concentration were investigated. Batch sorption results showed that the adsorption process was rapid and over 98% of Pb2+ was removed within 30 min at the optimal pH 4.0. The maximum adsorption capacity at 25°C, calculated by the Langmuir isotherm, was 82.17, 78.80, 61.13, and 28.56 mg/g for γ-divinyltriaminepropyl-methyldimethoxylsilane-grafted attapulgite (KH-103-ATP), γ-aminopropyl-methyldiethoxysilane-grafted attapulgite (KH-912-ATP), N-(β-aminoethyl-γ-aminopropyl)-methyl-dimethoxysilane-grafted attapulgite (KH-602-ATP), and ATP, respectively. Moreover, molecular dynamics simulations of adsorption behaviors of heavy-metal ions at attapulgite surfaces (010) modified by aminosilane agents were carried out. Both the PMF value and diffusion coefficient of metal ions suggest that KH-103-ATP owns the highest rate constant and capacity compared with the other two. And the analysis of free energy and results of XPS characterization revealed that Pb2+ formed covalent bonds with the nitrogen atom of aminosilane agents.  相似文献   

18.
A novel Valine coated magnetic nano-particles (MNPs-Val) has been synthesized for the removal of Cd(II) ions from aqueous solution. The MNPs-Val were developed by electrostatic attraction of valine (C5H11NO2) on the bare surface of Fe3O4 nanoparticles and characterized by using FT-IR, XRD, SEM, and TEM analysis. The morphology and average particles size 15-27 nm of MNPs-Val were analyzed by SEM and TEM. The coated MNPs were applied for adsorptive removal of Cd(II) ions from aqueous solutions. Factors affecting the adsorption of Cd(II) ions on the MNPs-Val surface such as the pH, temperature, adsorbent dosage, and contact time were investigated which have significant effect on the metal ion removal. The Cd(II) ions adsorption equilibrium on the MNPs-Val could be achieved in 35 min at the optimized pH 5 and follow the pseudo-second order kinetics model. The experimental data for the adsorption of Cd(II) was followed by the Langmuir isotherm and the maximum adsorption capacity was obtained at 0.2 g L?1 adsorbent dose at 308 K.  相似文献   

19.
Triply and doubly charged states of europium are revealed by 151Eu Mössbauer spectroscopy in the structure of glasses of the composition (mol %) 19.5Al2O3, 31.5SiO2, 26.5MnO, and 22.5Eu2O3. The isomer shifts in the Mössbauer spectra of Eu3+ and Eu2+ ions in the structure of glasses differ from the isomer shifts in the spectra of the Eu2O3 and EuO compounds. This difference is explained by the fact that the electron density at 151Eu nuclei is affected by the manganese and aluminum atoms, which are not bound directly to the europium atoms. The broadening of the spectra of the Eu2+ ions in glasses is caused by the nonuniform isomer shift.  相似文献   

20.
A novel clay mineral-based adsorbent for Ag(I) ions extraction was obtained by modifying hectorite with 2-(3-(2-aminoethylthio)propylthio)ethanamine (AEPE-hectorite). The modified hectorite was used to recover Ag(I) ions from wastewater for further preparation of silver nanoparticles supported hectorite. The parameters affecting silver ions extraction by AEPE-hectorite were investigated. The adsorbent could extract Ag(I) ions from solution in a wide pH range (1–8) and high extraction efficiencies were achieved in the solution pH ranged from 4 to 9. AEPE-hectorite showed a good selectivity toward Ag(I) ions over Co(II), Ni(II) and Cd(II) ions and the solution ionic strength had no significant effect on extraction efficiency. The adsorption of Ag(I) ions onto AEPE-hectorite followed the Freundlich isotherm model with maximum adsorption capacity observed in the experiment of 49.5 mg g 1. The adsorbent was successfully used to recover silver ions from a wastewater containing high concentration of silver and silver nanoparticles supported hectorite was obtained after reducing with NaBH4. These results show an alternative in the preparation of silver nanoparticles supported clay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号