共查询到17条相似文献,搜索用时 93 毫秒
1.
引入了蚂蚁算法来解决基本车辆路径问题,设计了合适的算法程序,通过实验表明了蚂蚁算法能够有效地求解VRP问题。 相似文献
2.
蚂蚁算法在带时间窗车辆路径问题中的应用及参数分析 总被引:1,自引:0,他引:1
带时间窗的车辆路径问题是一个典型的NP-Hard问题,本文将蚂蚁算法应用于带时间窗车辆路径问题,构造了该问题的表达方法,建立了相应的算法模型,对算法参数进行了分析并提出了相应的参数改进方案。仿真实验表明,改进后的算法可以快速、有效地求解带时间窗车辆路径问题,具有较好的可行性和适用性。 相似文献
3.
带时间窗车辆路径问题(VRPTW)是VRP的一种重要扩展类型,在蚂蚁算法思想基础上,设计用于求解该问题的混合改进型算法并求解Solomon标准数据库中的大量实例。经过大量数据测试并与其他启发式算法所得结果进行比较,获得了较好的效果。 相似文献
4.
混合算法在车辆路径优化问题中的应用 总被引:4,自引:0,他引:4
研究车辆路径优化问题,物流配送不仅要求配送及时,而且要求运输成本低,且路径最优。车辆路径优化是解决物流配送效率的关键,传统优化方法寻优效率低,耗时长,难以得到车辆路径最优解,导致物流配送成本过高。为了提高车辆路径寻优效率,降低物流配送成本,提出一种混合算法的车辆路径优化方法。首先建立车辆路径优化数学模型,然后用遗传算法快速找到问题可行解,再将可行解转换成蚁群算法的初始信息素,最后采用蚁群算法从可行解中找到最优车辆路径。仿真结果表明,混合方法提高车辆路径寻优效率,有效地降低物流配送成本。 相似文献
5.
詹玉洪 《计算技术与自动化》2010,29(1):138-141
研究车辆路径问题在物流配送系统中具有十分的重要意义。带时间窗车辆路径问题是每个客户的配送都有一个时间间隔限制的一类车辆路径问题。结合最大一最小蚂蚁系统、蚁群系统和最优一最差蚂蚁系统,提出求解带时间窗车辆路径问题的混合蚂蚁系统。实验结果表明:HAS能够有效地解决客户聚簇分布的带时间窗车辆路径问题。 相似文献
6.
车辆路径问题(VRP)是组合优化中典型的NP难题。根据车辆路径问题的实际情况,考察车辆数和总行程两个目标函数,给出了该问题的一种新的算法,蜂群算法。通过计算若干benchmark问题,并将结果与其他算法相比较与分析,验证了算法的有效性。蜂群算法是刚刚起步的智能优化算法,目前国内外关于蜂群算法的文献较少,故不仅是拓宽蜂群算法的应用范围的有效的尝试,同时也给车辆路径问题提供了一种新的解决方法。 相似文献
7.
刘霞 《计算机工程与科学》2013,35(1):130-136
在描述动态车辆路径问题的基础上,通过对计划周期分片,将动态车辆路径问题转换为一系列的静态子问题,并采用改进的最大最小蚂蚁系统对静态子问题进行求解。在最大最小蚂蚁系统中,针对聚类分布和随机分布的客户,分别采用顺序法和并行法构建路线,信息素的更新量随着可选客户数量的不同而改变,同时在算法执行过程中对期望启发式因子、选择概率、信息素持续因子和蚂蚁数量等参数进行自适应调整。以整个路线的行驶距离作为目标,采用该算法对9个算例进行测试,与其他文献中算法的计算结果相比较,在使用车辆数量基本一致的情况下,9个问题都得到了最好解和最好平均解,表明了算法的有效性。 相似文献
8.
车辆路径问题的单亲遗传算法 总被引:10,自引:1,他引:10
本文应用新颖的单亲遗传算法解决车辆路径问题。通过构造问题的染色体表达,采用基因换位算子进行染色体重组,实现了该问题单亲遗传算法。根据对单亲遗传算法、传统遗传算法以及它们的改型算法求解该问题所得的结果作的比较,证明了单亲遗传算法在寻优效率和“早熟收敛”问题上的优越性。 相似文献
9.
改进的蚂蚁算法车辆运行调度算法研究 总被引:1,自引:0,他引:1
研究车辆调度优化问题,考虑时间能合理安排运输线路.针对传统的蚁群算法收敛速度慢、易陷于局部最优、影响优化调度线路识别等缺陷,提出了一种改进的蚂蚁算法车辆调度优化方法模型.对城市车辆调度建立优化数学模型,将车辆运行调度归并为制造系统中的FLOWSHOP调度问题,构建一种动态开放的车辆调度系统优化模型,并采用改进的蚂蚁算法对数学模型进行仿真.仿真结果表明,提出的新的算法不仅能有效的求解车辆调度优化模型,可以快速得到近似最优解,而且计算机复杂度较低,收敛速度较快,是一种有效地车辆调度优化手段. 相似文献
10.
马磊 《数字社区&智能家居》2009,5(7):5298-5300
车辆路径问题(VRP)是图论中的NP问题,目前求解这类问题的算法可分为:精确算法、经典启发式算法和现代启发式算法三类;对这三类算法中最具代表性的几种算法进行了分析指出了其适用范围和场合、存在的问题以及改进的方案;最后,对其研究前景进行了展望。 相似文献
11.
本文简要介绍了遗传算法和VRP问题,并提出利用遗传算法来解决VRP径问题,基于遗传算法的基本思想设计了合适的算法程序,通过实验表明了遗传算法能够有效地求解VRP问题. 相似文献
12.
13.
14.
为求解带时间窗车辆路径问题,提出一种混合蚁群优化算法,利用两个隔离的种群同时进化的方式,有效避免了两种算法的缺点,种群Ⅰ应用蚁群算法可以丰富解得多样性,种群Ⅱ则应用粒子群算法来强化进化过程.种群Ⅰ通过局部搜索、复制、重组和选择等操作来保持种群广泛搜索的能力,种群Ⅱ则依靠复制、局部优化、交叉和选择等操作以快速获得高质量解并经常更新得到的解.对100个基准问题进行仿真测试,实验结果表明,与其他算法相比,利用蚁群粒子群混合优化算法能够快速有效地获得近似最优解. 相似文献
15.
对于求解带时间窗口车辆路径问题,提出一种融合邻域搜索策略的改进蚁群算法,针对时间窗口特性,将等待时间加入到蚁群算法的状态转移规则之中。为提升算法的局部寻优能力,设计多种节点删除操作和插入操作对得到的路径进行邻域搜索。最后利用Solomon标准算例对改进算法进行测试,与目前已知最优解对比,实验结果表明改进后的蚁群算法对带时间窗口的车辆路径问题有较好的适用性。 相似文献
16.
为应对大数据时代对带时间窗车辆路径问题(VRPTW)的实时求解要求,提出基于Spark平台的改进蚁群算法.在算法层面,利用改进的状态转移规则和轮盘赌选择机制构建初始解,结合k-opt邻域搜索进行路径构建优化,改进最大最小蚁群算法中的信息素更新策略;在实现层面,利用Spark提供的API对蚁群RDD进行操作,实现蚁群分布式并行求解.在标准算例Solomon benchmark和Gehring&Homberger benchmark的实验结果表明,该算法在大规模问题的求解精度和速度上有明显提升. 相似文献
17.
物流运输成本在物流总成本中占有很大比重,合理安排车辆路线,满足用户需求对企业有重要意义。车辆路径问题是运筹优化领域的热点研究问题,多时间窗车辆路径问题是对车辆路径问题的扩展。文中以总成本最小为目标,建立了多时间窗车辆路径问题的一般数学模型,针对蚁群算法在求解时容易陷入局部最优解和收敛速度慢的问题,改进转移概率公式,采用邻域搜索策略提高解的质量,借鉴模拟退火算法的思想对信息素进行更新,提高算法的寻优能力,加快收敛速度。实验结果表明,改进后的蚁群算法可以有效求得最优解,降低物流运输成本。相比其他算法,改进后的蚁群算法求解精确度高,收敛速度快,在求解多时间窗车辆路径问题上有着较好的性能。 相似文献