首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The inflammatory cytokine interleukin 1beta (IL-1beta) induces both cyclooxygenase-2 (Cox-2) and the inducible nitric-oxide synthase (iNOS) with increases in the release of prostaglandins (PGs) and nitric oxide (NO) from glomerular mesangial cells. However, the intracellular signaling mechanisms by which IL-1beta induces iNOS and Cox-2 expression is obscure. Our current studies demonstrate that IL-1beta produces a rapid increase in p38 mitogen-activated protein kinase (MAPK) phosphorylation and activation. Serum starvation and SC68376, a drug which selectively inhibits p38 MAPK in mesangial cells, were used to investigate whether p38 MAPK contributes to the signaling mechanism of IL-1beta induction of NO and PG synthesis. Serum starvation and SC68376 selectively inhibited IL-1beta-induced activation of p38 MAPK. Both SC68376 and serum starvation enhanced NO biosynthesis by increasing iNOS mRNA expression, protein expression, and nitrite production. In contrast, both SC68376 and serum starvation suppressed PG release by inhibiting Cox-2 mRNA, protein expression, and PGE2 synthesis. These data demonstrate that IL-1beta phosphorylates and activates p38 MAPK in mesangial cells. The activation of p38 MAPK may provide a crucial signaling mechanism, which mediates the up-regulation of PG synthesis and the down-regulation of NO biosynthesis induced by IL-1beta.  相似文献   

2.
3.
BACKGROUND: A number of studies have demonstrated a pathological role for interleukin-1 (IL-1) in experimental models of glomerulonephritis, but the cellular pattern of renal IL-1 production remains poorly characterized. The aim of this study, therefore, was to identify the cell types expressing IL-1 in normal and diseased rat kidney. METHODS: Renal IL-1 beta expression was examined in normal rats and during a 21-day time course of rat accelerated anti-GBM glomerulonephritis by northern blotting, in situ hybridization and double immunohistochemistry. RESULTS: Interleukin-1 beta mRNA expression was readily detectable in normal rat kidney by northern blot analysis and in situ hybridization. Immunohistochemistry staining demonstrated constitutive IL-1 beta expression by glomerular endothelial cells and cortical tubular epithelial cells. There was a marked increase in whole kidney IL-1 beta mRNA in rat anti-GBM glomerulonephritis. Glomerular IL-1 beta immunostaining was upregulated, being expressed by podocytes, mesangial cells and infiltrating macrophages, and was particularly prominent within glomerular crescents. Double staining with the ED1 antibody showed IL-1 beta expression in up to 13% of glomerular macrophages, whereas 48% of macrophages within crescents stained for IL-1 beta. However, the most marked increase in IL-1 beta expression was seen in cortical tubular epithelial cells, particularly in areas of tubular damage. In situ hybridization confirmed that tubular IL-1 beta staining was due to local cytokine synthesis rather than protein absorption. CONCLUSIONS: This study has identified constitutive IL-1 beta expression by glomerular endothelium and tubular epithelial cells in normal rat kidney. In addition, the marked upregulation of IL-1 beta expression by intrinsic glomerular cells and tubules in rat anti-GBM disease suggests an important role for these cells in IL-1 dependent crescent formation and tubulointerstitial injury.  相似文献   

4.
5.
6.
The synthesis of proinflammatory cytokines involves members of the mitogen-activated protein (MAP) kinase stress pathway, particularly p38 MAP kinase and c-jun NH2-terminal kinase. In this report we used hyperosmotic stress to study changes in steady-state mRNA levels and synthesis of proinflammatory cytokines in freshly obtained human peripheral blood mononuclear cells (PBMC) in vitro. There was no evidence of interleukin (IL)-8 gene expression in freshly obtained human blood despite 30 cycles of amplification of reverse-transcribed mRNA using the polymerase chain reaction. In contrast, exposure of PBMC to hyperosmotic conditions (330-410 mOsM) by the addition of NaCl to tissue culture medium induced gene expression for IL-1 alpha, IL-1 beta, and IL-8. Routine tissue culture medium is hyperosmotic (305 mOsM) compared to human plasma (280-295 mOsM), but decreasing the osmolarity to the physiological range resulted in a 50% reduction in baseline IL-8 synthesis (P < 0.001). Although hyperosmotically induced accumulation of steady-state mRNA levels for IL-1 alpha and IL-1 beta increased 50- and 7-fold over control, respectively, these were poorly translated into each respective cytokine. However, in PBMC stimulated by hyperosmotic stress, the addition of femtomolar concentrations of bacterial lipopolysaccharide, IL-1, or 1% normal human serum resulted in a synergistic synthesis (at least twice that expected) of IL-1 alpha, IL-1 beta, TNF-alpha, and IL-8.  相似文献   

7.
BACKGROUND: Shiga toxin 1 (Stx1) is a causative agent in hemolytic uremic syndrome (HUS). Its receptor, the glycosphingolipid globotriaosylceramide (Gb3), is expressed on cultured human endothelial and mesangial cells. Mesangial cell injury in HUS ranges from mild cellular edema to severe mesangiolysis and eventual glomerulosclerosis. We hypothesized that, in addition to endothelial cells, mesangial cells are targets of Stx1. METHODS: Human mesangial cells were exposed to Stx1. Protein synthesis was measured using [35S]-methionine/cysteine. Cell viability was measured as the lysosomal uptake of Neutral Red. Monocyte chemotactic peptide (MCP-1) mRNA and protein were analyzed by Northern blotting and ELISA. RESULTS: Stx1 (0.25 to 2500 ng/ml) resulted in a dose-dependent inhibition of protein synthesis. This effect of Stx1 was potentiated by preincubation of the cells with interleukin-1alpha (IL-1alpha; 2 ng/ml) or tumor necrosis-alpha (TNF-alpha; 500 U/ml). Stx1 had little effect on mesangial cell viability during the first 24 hours of exposure to Stx1. However, prolonged incubation with Stx1 for 48 and 72 hours resulted in a 68% and 80% decrease in cell-viability, respectively. Stx1 elicited a dose and time dependent increase in the levels of MCP-1 mRNA, an effect that was potentiated by preincubation with IL-1alpha. CONCLUSION: These data indicate that mesangial cells are susceptible to the effects of Stx1 in vitro. Stx1 exerts a spectrum of biologic effects on mesangial cells ranging from activation of chemokine genes to a lethal toxic injury. Immunoinflammatory cytokines potentiate the effects of Stx1. Thus, glomerular pathology in HUS may also result from a direct effect of Stx1 on mesangial cells.  相似文献   

8.
Pulmonary superoxide dismutase (SOD) plays an important role in the lung defense against O2 toxicity. We have previously demonstrated that tracheal insufflation of interleukin-1 alpha (IL-1) selectively enhances pulmonary MnSOD and protects rats against O2 toxicity. However, little is known about the cellular distribution of pulmonary MnSOD- and CuZnSOD-specific proteins. We performed immunohistochemistry in plastic sections (2 microns thick) to determine the effects of hyperoxia and IL-1 on the cellular distribution of pulmonary MnSOD and CuZnSOD in rats. MnSOD and CuZnSOD were present in all lung cells. Smooth muscle and endothelial cells appeared to contain higher immunoreactive MnSOD and CuZnSOD proteins than other lung cell types. Exposure of rats to 100% O2 for 24 hr had no effect on the cellular distribution and intensity of pulmonary MnSOD. However, at 50 hr after O2 exposure the intensity of pulmonary MnSOD was reduced. In contrast, tracheal insufflation of IL-1 markedly enhanced the intensity of pulmonary MnSOD in rats exposed to O2 for 50 hr. Neither O2 exposure nor IL-1 insufflation had any apparent effect on the distribution and intensity of pulmonary CuZnSOD. We conclude that IL-1 selectively enhances pulmonary MnSOD and that this effect is manifested in most lung cells, particularly smooth muscle and endothelial cells.  相似文献   

9.
10.
Mesothelioma is a malignant pleural or intraperitoneal tumor attributable to asbestos exposure in more than 80% of the cases. Manganese superoxide dismutase (MnSOD), a mitochondrial superoxide radical scavenging enzyme, is low in most tumors but is known to be induced by asbestos fibers and certain cytokines. Induction of MnSOD may be associated in asbestos-related pulmonary diseases in vivo. We investigated here MnSOD specific activity and MnSOD mRNA level using healthy human lung tissue, SV40-transformed human pleural mesothelial cells (Met5A), and six human malignant mesothelioma cell line cells. Total SOD (CuZnSOD + MnSOD) and MnSOD activities were 20.0 +/- 4.8 U/mg protein and 3.2 +/- 1.2 U/mg protein in healthy human lung tissue, and 25.6 +/- 10.7 U/mg and 3.8 +/- 1.0 U/mg in Met5A cells, respectively. In four mesothelioma cell lines MnSOD activity was significantly elevated, the highest activity (30.1 +/- 8.2 U/mg) was almost 10-fold compared to the activity in Met5A cells. The steady state mRNA level of MnSOD was low in Met5A cells and markedly higher in all mesothelioma cell lines roughly in proportion with enzyme activities. Cytotoxicity experiments, which were conducted in four cell lines, indicated that cells containing high MnSOD mRNA level and activity were resistant to the mitochondrial superoxide-producing agent menadione. In conclusion, our results suggest that human mesothelioma may express high levels of MnSOD, which is associated with high oxidant resistance of these cells.  相似文献   

11.
12.
The fact that insulin-producing islet beta-cells are susceptible to the cytotoxic effects of inflammatory cytokines represents a potential hinderance to the use of such cells for transplantation therapy of insulin-dependent diabetes mellitus (IDDM). In the current study, we show that IL-1beta induces destruction of INS-1 insulinoma cells, while having no effect on a second insulinoma cell line RIN1046-38 and its engineered derivatives, and that this difference is correlated with a higher level of expression of manganese superoxide dismutase (MnSOD) in the latter cells. Stable overexpression of MnSOD in INS-1 cells provides complete protection against IL-1beta-mediated cytotoxicity, and also results in markedly reduced killing when such cells are exposed to conditioned media from activated human or rat PBMC. Further, overexpression of MnSOD in either RIN- or INS-1-derived lines results in a sharp reduction in IL-1beta-induced nitric oxide (NO) production, a finding that correlates with reduced levels of the inducible form of nitric oxide synthase (iNOS). Treatment of INS-1 cells with L-NMMA, an inhibitor of iNOS, provides the same degree of protection against IL-1beta or supernatants from LPS-activated rat PBMC as MnSOD overexpression, supporting the idea that MnSOD protects INS-1 cells by interfering with the normal IL-1beta-mediated increase in iNOS. Because NO and its derivatives have been implicated as critical mediators of beta-cell destruction in IDDM, we conclude that well regulated insulinoma cell lines engineered for MnSOD overexpression may be an attractive alternative to isolated islets as vehicles for insulin replacement in autoimmune diabetes.  相似文献   

13.
14.
Human mesangial cells express an inducible form of nitric-oxide synthase (iNOS) after treatment with cytokines. Tetrahydrobiopterin (BH4), an essential cofactor for NOS, is required for cytokine-induced NO generation. We report here that BH4 is necessary not only for the activity but also for the expression of iNOS in human mesangial cells. Inhibition of de novo BH4 synthesis with 2,4-diamino-6-hydroxypyrimidine (DAHP) significantly attenuated iNOS activity as well as mRNA and protein expression in response to interleukin 1beta plus tumor necrosis factor alpha (IL-1beta/TNF-alpha). In contrast, sepiapterin, which provides BH4 through the pterin salvage pathway, strongly potentiated IL-1beta/TNF-alpha-induced iNOS expression and abrogated the inhibitory effect of DAHP. Inhibition of the pterin salvage pathway with methotrexate abolished sepiapterin potentiation of iNOS induction but did not alter the effect of IL-1beta/TNF-alpha. Determination of intracellular pteridines confirmed that sepiapterin markedly raised BH4 content, an effect that was blocked by methotrexate. These results suggest that BH4 availability plays an important role in the regulation of iNOS expression. The effect of BH4 appears to be mediated, at least in part, by an increase in mRNA stability, as indicated by the observation that DAHP shortened, whereas sepiapterin prolonged the half-life of IL-1beta/TNF-alpha-induced iNOS mRNA. Taken together, our results suggest that the biosynthesis of BH4 contributes to cytokine induction of iNOS expression in human mesangial cells through the stabilization of iNOS mRNA.  相似文献   

15.
16.
17.
The inflammatory cytokine interleukin-1beta (IL-1beta) induces cyclooxygenase-2 (Cox-2) expression with a concomitant release of prostaglandins from glomerular mesangial cells. We reported previously that IL-1beta rapidly activates the c-Jun NH2-terminal/stress-activated protein kinases (JNK/SAPK) and p38 mitogen-activated protein kinase (MAPK) and also induces Cox-2 expression and prostaglandin E2 (PGE2) production. The current study demonstrates that overexpression of the dominant negative form of JNK1 or p54 JNK2/SAPKbeta reduces Cox-2 expression and PGE2 production stimulated by IL-1beta. Similarly, overexpression of the kinase-dead form of p38 MAPK also inhibits IL-1beta-induced Cox-2 expression and PGE2 production. These results suggest that activation of both JNK/SAPK and p38 MAPK is required for Cox-2 expression after IL-1beta activation. Furthermore, our experiments confirm that IL-1beta activates MAP kinase kinase-4 (MKK4)/SEK1, MKK3, and MKK6 in renal mesangial cells. Overexpression of the dominant negative form of MKK4/SEK1 decreases IL-1beta- induced Cox-2 expression with inhibition of both JNK/SAPK and p38 MAPK phosphorylation. Overexpression of the kinase-dead form of MKK3 or MKK6 demonstrated that either of these two mutant kinases inhibited IL-1beta-induced p38 MAPK phosphorylation and Cox-2 expression but not JNK/SAPK phosphorylation and activation. This study suggests that the activation of both JNK/SAPK and p38 MAPK signaling cascades is required for IL-1beta-induced Cox-2 expression and PGE2 synthesis.  相似文献   

18.
Studies of neuronal injury and death after cerebral ischemia and various neurodegenerative diseases have increasingly focused on the interactions between mitochondrial function, reactive oxygen species (ROS) production and glutamate neurotoxicity. Recent findings suggest that increased mitochondrial ROS production precedes neuronal death after glutamate treatment. It is hypothesized that under pathological conditions when mitochondrial function is compromised, extracellular glutamate may exacerbate neuronal injury. In the present study, we focus on the relationship between mitochondrial superoxide production and glutamate neurotoxicity in cultured cortical neurons with normal or reduced levels of manganese-superoxide dismutase (MnSOD) activity. Our results demonstrate that neurons with reduced MnSOD activity are significantly more sensitive to transient exposure to extracellular glutamate. The increased sensitivity of cultured cortical neurons with reduced MnSOD activity is characteristically subject only to treatment by glutamate but not to other glutamate receptor agonists, such as N-methyl-d-aspartate, kainate and quisqualate. We suggest that the reduced MnSOD activity in neurons may exacerbate glutamate neurotoxicity via a mechanism independent of receptor activation.  相似文献   

19.
1. Endogenous synthesis of tetrahydrobiopterin (BH4) is an essential requirement for cytokine-stimulated nitric oxide (NO) synthesis in rat mesangial cells. GTP cyclohydrolase I, the rate-limiting enzyme in BH4 synthesis, is expressed in renal mesangial cells in response to two principal classes of activating signals. These two groups of activators comprise inflammatory cytokines such as interleukin (IL)-1beta and agents that elevate cellular levels of cyclic AMP. 2. We examined the action of the potent anti-inflammatory drug dexamethasone on GTP cyclohydrolase I induction in response to IL-1beta and a membrane-permeable cyclic AMP analogue, N6, O-2'-dibutyryladenosine 3'-5'-phosphate (Bt2cyclic AMP). 3. Nanomolar concentrations of dexamethasone markedly attenuated IL-1beta-induced GTP cyclohydrolase I mRNA steady state level as well as IL-1beta-induced GTP cyclohydrolase I protein expression and enzyme activity. In contrast, dexamethasone did not inhibit Bt2cyclic AMP-triggered increase in GTP cyclohydrolase I mRNA level and protein expression, and low (1 nM) or high (1 and 10 microM) doses of dexamethasone consistently increased Bt2cyclic AMP-induced GTP cyclohydrolase activity. 4. In summary, these results suggest that glucocorticoids act at several levels, critically dependent on the stimulus used, to control GTP cyclohydrolase I expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号