首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
半导体材料Ga2O3是继宽禁带半导体材料SiC/GaN之后新兴的直接带隙超宽禁带氧化物半导体,其禁带宽度为4.5~4.9eV,击穿电场强度高达8MV/cm(是SiC及GaN的2倍以上),物理化学稳定性高,在发展下一代电力电子学和固态微波功率电子学领域具有较大的潜力。自2012年第一只Ga2O3场效应晶体管诞生以来,Ga2O3微电子学的研究呈现快速发展态势。本文综述了β-Ga2O3单晶材料和外延生长技术以及β-Ga2O3二极管和β-Ga2O3场效应管等方面的研究进展,介绍了β-Ga2O3材料和器件的新工艺、新器件结构以及性能测试结果,分析了相关技术难点和创新思路,展望了Ga2O3微电子学未来的发展趋势。  相似文献   

2.
单斜晶系氧化镓(β-Ga2O3)超宽带半导体材料具有优良的电学、光学特性以及较高的物理化学稳定性,在大功率器件、紫外探测器以及气体传感器等技术领域具有巨大的应用前景,近年来已成为国际研发的热点。概述了β-Ga2O3半导体材料的特性优势。综述了β-Ga2O3在功率半导体器件、紫外探测器、气体传感器、衬底材料以及GaN器件栅介质领域的研发和应用现状。最后,分析了β-Ga2O3材料在半导体技术领域的应用前景,指出大功率半导体器件领域和日盲深紫外探测器领域将是未来发展的重要方向。  相似文献   

3.
采用金属有机化学气相沉积(MOCVD)方法在(010) Fe掺杂半绝缘Ga2O3同质衬底上外延得到n型β-Ga2O3薄膜材料,材料结构包括400 nm的非故意掺杂Ga2O3缓冲层和40 nm的Si掺杂Ga2O3沟道层.基于掺杂浓度为2.0×1018 cm-3的n型β-Ga2O3薄膜材料,采用原子层沉积的25 nm的HfO2作为栅下绝缘介质层,研制出Ga2O3金属氧化物半导体场效应晶体管(MOSFET).器件展示出良好的电学特性,在栅偏压为8V时,漏源饱和电流密度达到42 mA/mm,器件的峰值跨导约为3.8 mS/mm,漏源电流开关比达到108.此外,器件的三端关态击穿电压为113 V.采用场板结构并结合n型Ga2O3沟道层结构优化设计能进一步提升器件饱和电流和击穿电压等电学特性.  相似文献   

4.
作为一种新兴的超宽禁带半导体材料,氧化镓(Ga2O3)被认为是下一代高功率电力电子器件领域的战略性先进电子材料。相较于热稳定的β-Ga2O3,亚稳相Ga2O3表现出更为新颖的物理性质,逐渐受到关注。通过异质外延生长高质量的亚稳相Ga2O3单晶薄膜是实现亚稳相Ga2O3基功率电子、微波射频和深紫外光电信息感知器件的重要前提。重点阐述了亚稳相Ga2O3的晶体结构、电子能带结构以及相关物理性质,总结了近年来亚稳相Ga2O3异质外延和能带工程的研究进展,并对未来亚稳相Ga2O3材料和器件的发展趋势进行了展望。  相似文献   

5.
近年来,氧化镓(Ga2O3)日盲光电探测器因其高灵敏度和低虚警率及广泛的应用前景,受到了科学家们的高度关注.为了满足现代社会对低损耗、环保、高集成、轻便和柔性器件的需求,可自供电的柔性器件备受关注.然而,到目前为止,Ga2O3基柔性自供电光电探测器鲜有报道.本文通过原位生长技术在耐高温的柔性衬底玻璃纤维布上生长了β-Ga2O3纳米线,并构筑Ag/β-Ga2O3肖特基结.在肖特基结的作用下,光生载流子可在无外加偏压下分离和传输,并展现出超低的暗电流(0.2 pA)、高光暗比(~500)、快响应时间(0.46/0.41 s)和高探测率(6.8×109 Jones).该探测器也表现出良好的机械性能.结果表明,Ag/β-Ga2O3肖特基结探测器在深紫外探测器领域具有广阔的应用前景,为柔性自供电探测技术的发展提供了新的思路.  相似文献   

6.
采用改进的水热法对衬底进行预处理,分别在单晶硅Si(111)和蓝宝石C(0001)衬底上生长一层Ga2O3籽晶层.籽晶层退火处理后放入Ga2(NO3)3溶液高压反应釜内进行水热反应,待反应结束进行二次退火,成功制备出了Ga2 O3纳米棒.研究了不同温度对籽晶层和Ga2 O3纳米棒的影响,通过扫描电子显微镜(SEM)和X...  相似文献   

7.
氧化镓(Ga2O3)以其禁带宽度大、击穿场强高、抗辐射能力强等优势,有望成为未来半导体电力电子领域的主力军。相比于目前常见的宽禁带半导体SiC和GaN,Ga2O3的Baliga品质因数更大、预期生长成本更低,在高压、大功率、高效率、小体积电子器件方面更具潜力。对Ga2O3外延材料、功率二极管和功率晶体管的国内外最新研究进行了概括总结,展望了Ga2O3在未来的应用与发展前景。  相似文献   

8.
采用电子束蒸发法在硅衬底或 Ba Ti O3陶瓷基片上沉积了 Ga2 O3∶Mn电致发光膜 ,并进行了不同温度热处理 ,制备了电致发光器件。用 X射线衍射 ( XRD)分析了 Ga2 O3∶ Mn薄膜晶体结构 ;用荧光分光光度计测试了电致发光器件的发射光谱。研究了 Ga2 O3∶ Mn薄膜的晶体结构与其光谱特性之间的关系。实验结果表明 ,Ga2 O3∶ Mn薄膜结晶度随热处理温度的提高而提高 ,且晶体结构和结晶取向也随之改变 ;经 5 0 0℃热处理的 Ga2 O3∶ Mn薄膜电致发光器件发绿光 ,其光谱主峰分布在 495~ 5 3 5 nm之间 ,且随驱动电压增高 ,谱峰出现蓝移现象  相似文献   

9.
张修太  黄蕙芬 《电子器件》2004,27(4):581-584
采用电子束蒸发法在硅衬底或BaTiO3陶瓷基片上沉积了Ga2O3:Mn电致发光膜,并进行了不同温度热处理,制备了电致发光器件。用X射线衍射(XRD)分析了Ga2O3:Mn薄膜晶体结构;用荧光分光光度计测试了电致发光器件的发射光谱。研究了Ga:O。:Mn薄膜的晶体结构与其光谱特性之间的关系。实验结果表明,Ga2O3:Mn薄膜结晶度随热处理温度的提高而提高,且晶体结构和结晶取向也随之改变;经500℃热处理的Ga2O3:Mn薄膜电致发光器件发绿光,其光谱主峰分布在495~535nm之间,且随驱动电压增高,谱峰出现蓝移现象。  相似文献   

10.
Ga_2O_3是一种新兴的超宽禁带半导体材料,具有超宽带隙4.8 eV、超高理论击穿电场8 MV/cm以及超高的Baliga品质因数等优良特性,作为下一代高功率器件材料其越来越受到人们的关注。首先,回顾了宽禁带半导体材料β-Ga_2O_3的基本性质,包括β-Ga_2O_3的晶体结构和电学性质,简述了基于β-Ga_2O_3制造的功率器件,主要包括肖特基势垒二极管(SBD)和金属-氧化物-半导体场效应晶体管(MOSFET)。总结回顾了β-Ga_2O_3SBD和MOSFET近年来的研究进展,比较了不同结构器件的特性,并分析了目前β-Ga_2O_3功率器件存在的问题。分析表明,β-Ga_2O_3用于高功率和高压电子器件具有巨大潜力。  相似文献   

11.
由于硅材料本身的限制,传统硅电力电子器件性能已经接近其极限,碳化硅(SiC)器件的高功率、高效率、耐高温、抗辐照等优势逐渐突显,成为电力电子器件一个新的发展方向.综述了SiC材料、SiC电力电子器件、SiC模块及关键工艺的研究现状,重点从材料、器件结构、制备工艺等方面阐述了SiC二极管、金属氧化物半导体场效应晶体管(MOSFET)、结晶型场效应晶体管(JFET)、双极结型晶体管(BJT)、绝缘栅双极晶体管(IGBT)及模块的研究进展.概述了SiC材料、SiC电力电子器件及模块的商品化情况,最后对SiC材料及器件的发展趋势进行了展望.  相似文献   

12.
陶瓷材料是半导体器件,特别是大功率半导体器件绝缘基板的重要材料体系。随着半导体器件向大功率化、高频化的不断发展,对陶瓷绝缘基片的导热性和力学性能都提出了更高的要求。成型是陶瓷基板的制备过程的关键环节,也是陶瓷基板制备的难点。本文介绍了流延成型、凝胶注模成型和新型3D打印成型等几种基板成型方法,分析了不同成型方法的特点、优势及技术难点。介绍了了近年来国内外陶瓷基板成型的研究现状,并对其未来发展及应用进行了展望。  相似文献   

13.
王宏建  杨涛  廖润钱  宋昶 《半导体光电》2021,42(4):458-463, 478
SiC作为第三代半导体材料的典型代表,因具有优异的物化性能,在功率器件领域具有极大的应用前景.文章简要介绍了激光制孔的基本原理,综述了 SiC的长脉冲与超短脉冲激光制孔研究进展,对比了长脉冲与超短脉冲激光的加工特点,分析了不同脉冲宽度下SiC的制孔效果.同时,介绍了 GaN/SiC,AlGaN/GaN/SiC等SiC功率器件的激光制孔研究现状.最后,指出了 SiC及其功率器件激光制孔面临的挑战,并展望了未来的发展方向.  相似文献   

14.
卢胜利  熊才伟  漆岳 《现代雷达》2019,41(12):75-79
现代雷达的发展迫切需要电源提升功率密度和效率。基于第三代半导体碳化硅(SiC)材料的功率器件在耐压等级、高频工作、高温性能等方面有较大优势。文中详细阐述了SiC 器件的特性和各类型SiC 功率器件的发展现状,分析了SiC功率器件在雷达电源中的应用方向,并基于SiC 金属氧化物半导体场效应晶体管(MOSFET)设计了阵面电源样机,完成了高开关频率性能测试。实验结果表明:SiC MOSFET 的高频工作能降低系统损耗,并提升电源功率密度。  相似文献   

15.
One of the crucial challenges that face the wide-spread implementation of flexible and transparent electronics is the lack of high performance p-type semiconductor material. Cu2O in thin-film form is a potentially attractive material for such applications because of its native p-type semi-conductivity, transparency, abundant availability, non-toxic nature, and low production cost. This review summarizes recent research on using copper oxide Cu2O thin films to produce p-type transparent thin-film transistors (TFTs) and complementary metal–oxide–semiconductor (CMOS) devices. After a short introduction about the main advantages of Cu2O semiconductor material, different methods for depositing and growing Cu2O thin films are discussed. The hi-tech development, along with the associated obstacles, of the Cu2O-based thin-film transistors is reviewed, with special emphasis on those made of sputtered Cu2O films. Finally, the bilayer scheme as one of the most exciting and promising technique for both TFTs and CMOS devices will be considered.  相似文献   

16.
氮化铝(AlN)因具备优良的理化性能,目前已被广泛应用于微电子及半导体器件的基板和封装领域中,同时在功率器件、深紫外LED及半导体衬底方面也具有广阔发展前景。AlN粉体作为AlN产品的主要原料是决定其性能的关键因素。在对AlN的结构与性能综合分析基础上,系统介绍了当前AlN粉体制备技术的研究进展和应用现状,同时对各制备工艺的特点进行了分析探讨。指出在微米AlN粉体制备方面,碳热还原法和直接氮化法仍具有明显优势,而化学气相沉积法和等离子体法则在纳米AlN粉体制备方面具有良好的应用前景。获得更高纯度、粒度可控、形貌均匀分散的粉体是AlN制备技术的研究方向。  相似文献   

17.
对目前基于过渡金属硫族化合物(TMD)材料(MoS2、WSe2等)的互补金属氧化物半导体(CMOS)反相器电路相关研究进行了综述.总结了TMD材料的物理性质、制备方法和基于TMD的场效应晶体管器件的研究进展.对基于TMD的集成电路技术研究进行了介绍与分析.分别在结构设计、集成工艺、性能优化及电路集成等方面对基于TMD材...  相似文献   

18.
国内大功率半导体激光器研究及应用现状   总被引:17,自引:4,他引:13       下载免费PDF全文
近年来,国内外在大功率半导体激光器方面的研究均取得了很大的进展。其中,大功率半导体激光器列阵的研究和应用成为最大的亮点,如超高电光转换效率、高亮度和高可靠性等主要光电特性均实现了巨大的突破。针对国内大功率半导体激光器主要研究内容和关键技术进行了总结,在外延片结构中广泛采用应变量子阱结构、无铝有源区宽波导大光腔结构及非对称波导结构来提高端面光学灾变损伤光功率密度,还从腔面光学膜、器件封装、器件可靠性、光束整形与耦合以及器件应用等几个方面给予介绍。  相似文献   

19.
何君  李明月 《半导体技术》2019,44(4):241-250,256
作为一种Ⅲ-Ⅴ族化合物半导体材料,AlN不仅具有超宽直接带隙(6.2 eV)、高热导率、高电阻率、高击穿场强、优异的压电性能和良好的光学性能,而且AlN晶体还与其他Ⅲ-N材料具有非常接近的晶格常数和热膨胀系数。这些特点决定了AlN在GaN外延、紫外光源、辐射探测器、微波毫米波器件、光电器件、电力电子器件以及声表面波器件等领域具有广阔的应用前景。介绍了AlN材料在功率器件、深紫外LED、激光器、传感器以及滤波器等领域的应用现状,并对AlN材料及其应用的未来发展趋势进行了分析和展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号