首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Design of sandwich structures for concentrated loading   总被引:1,自引:0,他引:1  
While sandwich construction offers well-known advantages for high stiffness with light weight, the problem of designing the sandwich structure to withstand localized loading, such as from accidental impact, remains an important problem. This problem is more difficult with lower stiffness cores, such as expanded foam. In the present study, experiments have been carried out on foam core sandwich beams with carbon/epoxy faces, under conditions of concentrated loading. The variables considered were the density of the foam and the relative thickness of the core. The common failure modes of sandwich structures were observed, including core failure in compression and shear, delamination, and fiber failure in the faces. These failure modes were systematically related to the test variables by means of a detailed stress analysis of the specimen, and a consideration of the failure properties of the constituent materials. The loading is characterized by localized high stress and strain concentrations that are not predicted in first-order shear deformation sandwich beam theory. The three-dimensional elasticity solution of Pagano was used to obtain the stress distributions. The strength prediction requires a detailed consideration of the localized nature of the loading, including the effects of strain gradients in the faces. The results show that failure modes and load levels can be predicted for sandwich structures under concentrated loading, but that accurate predictions require a consideration of the details of the concentrated loading. The results have a direct application in predicting the ability of sandwich structures to withstand localized loading such as from accidental impact.  相似文献   

2.
The adhesive joint bonding the faces to the core material in a sandwich structure ensures that the loads are transferred between the components. However, debondings may arise either during the manufacturing process or due to overloading. These will reduce both the stiffness and the load bearing capacity of the structure. In the present paper, debondings in foam core sandwich beams are investigated assuming that cracks in the interface between the face and core are present. Stress intensity factors are found from an analytical model and compared to solutions from several finite element calculations. Fracture toughness values, determined from simple specimens, are used to predict the fracture loads for beams with simulated debondings subjected to four-point bending.  相似文献   

3.
《Composites Part B》2003,34(6):509-517
Sandwich beams and panels with symmetric faces and cores of varying stiffness are investigated. The paper presents a theoretical and experimental study of the local effects that occur in the vicinity of intersections between cores of different stiffness in such sandwich panels. These local effects manifest themselves by a significant rise of the bending stresses in the faces in the vicinity of the core junctions. Closed-form estimates of the stress/strain fields induced by local effects are presented for sandwich beams and panels loaded in cylindrical bending. The accuracy of the derived closed-form estimates is verified experimentally for the case of a sandwich beam in three-point bending.  相似文献   

4.
A test method is described for measuring cohesive laws for interfaces in sandwich structures. It is proposed to increase the bending stiffness of the sandwich faces by adhering steel bars onto the sandwich faces. This stiffening reduces rotations and ensures that the method is applicable for thin face sandwich specimens. Crack growth along the face/core interface is obtained by a stiffened double cantilever beam specimen loaded with uneven bending moments (DCB-UBM). The J integral is employed and the opening of the pre-crack tip is measured using a commercial optical measurement system, from which mixed-mode cohesive laws are extracted.  相似文献   

5.
Nomex蜂窝夹层结构弯曲刚度温度相关性的力学建模   总被引:1,自引:0,他引:1       下载免费PDF全文
胶黏剂粘接性能下降导致的面板与蜂窝芯分离是Nomex蜂窝夹层结构在高温下力学性能发生退化的主要原因。为此定义了胶黏剂的等效脱粘系数为温度升高引起蜂窝夹层结构弯曲刚度下降的损伤变量,并引入面板和蜂窝芯弹性模量的温度保持系数,建立了蜂窝夹层结构弯曲刚度温度相关性的力学模型。经外伸梁三点弯曲法试验校验,所建力学模型计算值与试验值的误差在15%内,可以较好地实现蜂窝夹层结构在高温下的弯曲刚度预报。研究成果可以用于软夹心蜂窝夹层结构在高温下弯曲刚度的估算。   相似文献   

6.
Sandwich panel higher order theory (SPHOT) which estimates core compression and face stresses is used to predict damage modes of a sandwich beam with unequal faces. It is shown that sandwich panel classical theory (SPCT) which is based on investigating of behavior of the structure with considering core shear stress in simply supported boundary conditions and neglecting shear modulus of core can not predict the failure load in the case of unequal faces when core yielding is happened. Comparing the results obtained by SPHOT, SPCT and available experimental ones shows that the higher order theory is a suitable approach to predict failure loads in this case for different damage modes.  相似文献   

7.
高精度蜂窝夹层结构反射面板由经过开缝应力释放工艺处理的表层铝板和铝蜂窝芯胶接而成, 为了研究缝隙所引起的夹层结构刚度损失, 基于对实验数据的统计分析, 考虑缝隙面积和分布等对刚度的影响, 定义了缝隙对刚度的影响系数与刚度的损失系数并建立了二者之间的关系, 提出了基于缝隙特征的蜂窝夹层结构刚度损失的评估方法。实验分析结果表明, 缝隙对夹层结构刚度造成的损失达到一定程度后明显减缓, 刚度最大损失可限定在40%。针对表板带有缝隙的夹层结构的数值分析, 依据夹层结构刚度等效原则, 利用刚度损失与缝隙影响系数之间的关系, 可将带有缝隙的表板等效为厚度减薄的连续表板, 对于模拟带有缝隙的夹层结构具有一定的应用价值。  相似文献   

8.
A stiffness matrix is derived for a rectangular orthotropic sandwich plate element with thick faces by the assumed stress hybrid approach. It will be demonstrated that an independent polynomial can be used for the internal forces of the sandwich plate by the membrane theory (assumption of thin faces) and also for the additional moments and shear forces of the faces. The boundary displacements are approached solutions of the homogeneous differential equation of a sandwich beam.  相似文献   

9.
The investigation of bending response of a simply supported functionally graded (FG) viscoelastic sandwich beam with elastic core resting on Pasternak’s elastic foundations is presented. The faces of the sandwich beam are made of FG viscoelastic material while the core is still elastic. Material properties are graded from the elastic interfaces through the viscoelastic faces of the beam. The elastic parameters of the faces are considered to be varying according to a power-law distribution in terms of the volume fraction of the constituent. The interaction between the beam and the foundations is included in the formulation. Numerical results for deflections and stresses obtained using the refined sinusoidal shear deformation beam theory are compared with those obtained using the simple sinusoidal shear deformation beam theory, higher- and first-order shear deformation beam theories. The effects due to material distribution, span-to-thickness ratio, foundation stiffness and time parameter on the deflection and stresses are investigated.  相似文献   

10.
While sandwich construction offers well-known advantages for high stiffness with light weight, the problem of designing the sandwich structure to withstand shear loading remains an important problem. This problem is more difficult with lower stiffness foam cores under high shear loading because the core is typically the weakest component of the structure and is the first one to fail in shear under the assuming of perfect contact between the skin and the foam core. In the present study, the shear response of the composite sandwich panels with Polyvinylchloride (PVC) foam core was investigated. The PVC H100 foam core is sandwiched between Glass Fiber Reinforced Polymer (GFRP) skins using epoxy resin to build a high performance sandwich panel to be investigated. Experiments have been carried out to characterise the mechanical response of the constituent materials under tension, compression and shear loading. Static shear tests for the sandwich panel reveal that the main failure mode is the delamination between the skin and the core rather than shearing the core itself due to the considerable value of the shear strength of the PVC foam. The Finite Element Analysis (FEA) of the sandwich structure shows that shear response and failure mode can be predicted, but that accurate predictions require a consideration of the non-linear response of the foam core. The results have a direct application in predicting the ability of the sandwich structure to withstand the shear loading.  相似文献   

11.
提出一种针对有限大三明治蜂窝板的隔声预报方法。在一定条件下,三明治蜂窝板被看成是正交各向异性的,通过对蜂窝板正交方向上切割下来梁的简单测 试,可以得到三明治蜂窝板的等效刚度,结合正交各向异性板的振动方程,把板的振动展开成模态叠加的形式并求解,最终可以得到一块有限大三明治蜂窝板的理论隔声公式,理论预报结果与实验室测量结果对比良好。  相似文献   

12.
In order to solve bending behavior difference of corrugated structure in L andWorientation, bending response for composite sandwich beams with foldcores of three different wall thicknesses were experimentally and numerically investigated. Effect of the cell walls thickness on the strength and failure behavior of the composite sandwich beams with L and W orientations was also examined. The deformation mode was obtained by the numerical method; a constitutive law of laminated material has been incorporated into a finite element (FE) analysis program. Numerical calculations give accurate prediction to the bending response of foldcore composite sandwich beams comparing with experiments. Structural flexural stiffness, strength and failure mechanism at a given topological geometry depended on the nature of core itself: the bending stiffness and strength of the sandwich beam increased with the core wall thickness (relative density). Also, bending isotropy was shown in this study for foldcore composite sandwich beams with selected core geometry.  相似文献   

13.
Sandwich composites are finding increasing applications in aerospace, marine and commercial structures because they offer high bending stiffness and lightweight advantages. Currently, foam and honeycomb core sandwich composites are widely used in structural applications. However, affordability continues to be the driver to develop sandwich constructions that can be processed at lower costs and containing integrated design features. This paper considers sandwich constructions with reinforced cores by way of three-dimensional Z-pins embedded into foam, honeycomb cells filled with foam, and hollow/space accessible Z-pins acting as core reinforcement. These designs offer added advantages over conventional constructions load bearing by enabling functions such as ability to route wires, mount electronic components, increase transverse stiffness, tailor vibration damping, etc. With the assumption that these sandwich constructions would be part of a larger structure, impact damage is often of concern. This paper deals with: (a) processing of sandwich composites using out-of-autoclave cost-effective liquid molding approach, and (b) investigation of the high strain rate impact (164–326/s) response of the sandwich composite structures. Wherever applicable, comparisons are made to traditional foam core and honeycomb core sandwich constructions.  相似文献   

14.
《Composites Part A》1999,30(10):1171-1185
The manufacturing of sandwich components from pre-consolidated glass/polyamide 12 faces and polymethacrylimide foam core by compression moulding has been studied. A statistical experiment design was used initially to identify the dominant process parameters in terms of interfacial bond strength, evaluated using the transverse tensile test method. In a subsequent extended study, the influence of face temperature and moulding pressure on the mechanical properties of the face–core interface and the sandwich construction as a whole, were characterised in terms of mode I interfacial fracture toughness, shear strength, shear stiffness, and flexural rigidity. These properties were evaluated using a modified double cantilever beam test, shear test, and four point bend test.  相似文献   

15.
In order to minimize weight ( or cost) of sandwich panels, the thickness and angles of orthotropy of each ply in the faces are determined. The stiffness and strength both in bending and shear have prescribed values. For curved panels an estimation is made of the interlaminar stresses between core and faces. Buckling constraints can be incorporated. The optimization problem is solved by successive quadratic programming and BGFS-updating formulas. The method is applied in an interactive FORTRAN V programme on a Siemens 7541 computer for optimization of sailing-yacht structures.  相似文献   

16.
Development of a satellite structure with the sandwich T-joint   总被引:1,自引:0,他引:1  
In this study, a monocoque satellite structure composed of many composite sandwich panels, which consist of two carbon fiber/epoxy composite faces and an aluminum honeycomb core, was designed to reduce structural mass and to improve static and dynamic structural rigidity. To join composite sandwich panels with T-shape joints, a new I-shape side insert, which was fixed inside the composite sandwich panel edge with film adhesive, was suggested. The composite sandwich panels were assembled with bolts using the through-the-thickness insert and the I-shape side insert. The flatwise tensile and compressive tests of the composite sandwich panels were performed with respect to the bonding pressure between the composite face and the aluminum honeycomb core to achieve an optimal bonding pressure. To investigate the joint characteristics of the composite faces and the I-shape side insert, cleavage peel tests were performed with respect to the bonding thickness. Also, a finite element model of the composite sandwich T-joint with the I-shape side insert was developed from experimental results of the impulse response tests and composite sandwich T-joint static tests. From the finite element analysis, the structural reliability of the monocoque composite sandwich satellite structure was verified.  相似文献   

17.
针对碳纤维增强树脂复合材料(CFRP)蒙皮-铝蜂窝夹层结构,使用半球头式落锤冲击试验平台进行了低速冲击载荷下蜂窝芯单元尺寸对夹层板冲击性能影响的试验探究,并基于渐进损伤模型、内聚力模型和三维Hashin失效准则,在有限元仿真软件ABAQUS中建立了含蒙皮、蜂窝芯、胶层的CFRP蒙皮-铝蜂窝夹层板精细化低速冲击仿真模型,仿真结果与试验结果吻合较好。利用该数值模型进一步探究了蜂窝芯高度、蒙皮厚度和蜂窝芯壁厚等结构参数对于蜂窝夹层板低速冲击吸能效果的影响。结果表明:增大铝蜂窝芯的单元边长,会减小蜂窝夹层板的刚度,提升夹层板的吸能效果;芯层高度对夹层板的刚度及抗低速冲击性能影响较小;增大蜂窝夹层板的蒙皮厚度,可以提高夹层板的刚度,但会降低夹层板的吸能效果;增大蜂窝芯的壁厚,可以提高夹层板的刚度和抗低速冲击性能。   相似文献   

18.
提出了一种求解波纹夹层板结构线性弯曲问题的无网格模型。将波纹夹层板看成两侧平板和中间波纹板核的复合结构,用正交各向异性板等效近似波纹板核。先基于一阶剪切变形理论,由无网格伽辽金法建立各板的刚度方程,再通过位移协调条件将各板刚度方程叠加,以得到整体刚度方程。采用全转换法处理位移边界。算例表明:该文所提出的无网格模型分析波...  相似文献   

19.
Sandwich structures are highly demanded where a high flexural stiffness per weight ratio is needed. The main limiting factor of these materials is the core/skin interface, which tends to delaminate. Tufting is one of the most promising technologies to reinforce this interface along the z-direction. In this article, the energy absorption of tufted sandwich structures under impact loads is evaluated. Six different types of tufted specimens were tested, including both carbon and glass fiber faces with three different tufting densities. The impact behavior of a sandwich panel is proved to be effectively improved by the tufting process.  相似文献   

20.
This paper presents a study of the bending's stiffness and strength of oil palm wood (OPW) core sandwich panel overlaid with rubberwood veneer under center point bending. Parameters including density and grain orientation of OPW core, rubberwood veneer thickness and span length were investigated. An experimental evaluation of some mechanical properties of OPW and the bending stiffness and strength of the sandwich beams was performed. Linear elastic beam theory was used to predict the bending performance of the panels. Results show that the linear elastic beam theory with the uses of the power law expressions of Young's moduli and shear strength of the OPW as a function of density derived within this study, adequately predicted the stiffness and bending strength of the sandwich beams. Higher OPW core density increased stiffness and strength of the beam. Failures by face fracture and core shear were observed which the latter tended to occur at low OPW core density, relatively thick veneer face and short span length. Grain orientation of OPW core little influenced stiffness and strength of the sandwich board. Finally, the stiffness and failure load equations of the OPW sandwich board were proposed for practical uses of this product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号