共查询到18条相似文献,搜索用时 46 毫秒
1.
测定2A14合金连续冷却转变动力学曲线(CCT图),并对该曲线进行应用研究。通过DSC分析和SEM组织观察确定2A14合金合理的固溶温度,采用动态电阻法测得固溶后合金连续冷却过程的电阻—温度曲线,根据曲线斜率变化判断相变信息,绘制2A14合金的CCT图,利用透射电镜(TEM)观察连续冷却过程中合金的组织转变。结果表明:2A14合金适宜的固溶温度为505 ℃;随着冷却速度的增加,相变开始温度先降低,在达到某冷却速度时骤升,然后持续增加;相变主要集中在140~380 ℃的温度区间发生,抑制相变发生的临界冷却速度稍大于38.5 ℃/s;在实验范围内,20 mm厚的2A14合金板适宜采用60 ℃或100 ℃水淬,参考所测CCT图制定分级淬火工艺,可以在最大限度减小淬火应力的同时,抑制第二相的析出。 相似文献
2.
3.
用MMS-300型热力模拟试验机研究了含铌微合金低碳钢奥氏体连续冷却过程的相变规律,用热膨胀法结合金相法建立了实验钢变形和未变形奥氏体的连续冷却转变曲线(CCT),研究了加速冷却和热变形对组织转变的影响。结果表明:同静态CCT曲线相比,实验钢的动态CCT曲线整体向左上方移动,随冷却速度的增大,γ→α相变开始温度逐渐降低;高温变形促进铁素体和珠光体相变,同时抑制了贝氏体相变,扩大了铁素体转变区;奥氏体变形对贝氏体转变有双重作用:当冷速较低时,变形抑制贝氏体相变;冷速较高时变形促进贝氏体相变。 相似文献
4.
利用膨胀法结合金相-硬度法,在膨胀仪上测定了07MnNiMoDR钢的临界点Ac1和Ac3;测定了该钢在不同冷却速度下连续冷却时的膨胀曲线,获得了连续冷却转变曲线(CCT曲线);研究了冷却速度对该钢组织及硬度的影响。结果表明,当冷却速度为0.5℃/s时,转变产物为铁素体和珠光体,当冷却速度为1~5℃/s时转变产物是铁素体、珠光体和贝氏体,当冷却速度为10~80℃/s时转变产物为贝氏体,当冷却速度大于150℃/s时,转变产物为马氏体。该钢种CCT曲线的测定可为生产实践和新工艺的制定提供一定的参考依据。 相似文献
5.
6.
7.
8.
9.
10.
采用Gleeble-2000热模拟试验机研究了FQK400钢的连续冷却转变过程,分析了不同冷速下钢的组织转变和力学性能,研究了形变对连续冷却条件下相变的影响规律.结果表明,FQK400钢的临界点Ac1、Ac3分别为730℃和840℃.除30~40℃/s冷速范围内同时有10%的上贝氏体,5℃/s冷速下同时有10%的魏氏组织外,其他冷速下贝氏体均为粒状贝氏体,铁素体均为多边形铁素体和针状铁素体.900℃变形50%,使先共析铁索体转变线左上移,依冷速不同,铁素体转变量增加5%~13%,珠光体转变量减少5%~8%,贝氏体转变开始线下降约10℃,转变终了线基本不变,贝氏体转变量减少5%~25%,并使不发生贝氏体转变的临界冷速由0.8℃/s降低到0.3℃/s,马氏体转变量在冷速30~15℃/s时增加了10%~15%,其他冷速时减少3%~7%.变形后的相含量-冷速变化规律基本不变. 相似文献
11.
12.
13.
14.
15.
针对Q420钢特厚板的生产工艺特点,利用Gleeble-2000热模拟试验机研究了该钢变形和未变形条件下的连续冷却过程中相变行为及组织演变规律,绘制了该钢的连续冷却转变(CCT)曲线,分析了控轧控冷工艺对其连续冷却相变的影响。结果表明:Q420钢随着冷却速度的提高,奥氏体→铁素体开始转变温度Ar3降低,相变后铁素体晶粒细化;贝氏体开始转变温度(Bs)先升高后降低,贝氏体转变量逐渐增加。随着变形量的增加,CCT曲线整体向左上方移动,加速了铁素体和贝氏体相变。随着变形温度的降低,铁素体相变温度升高,扩大了铁素体区,贝氏体相变温度降低。 相似文献
16.
17.
18.
利用显微镜(OM)、差热分析(DSC)、扫描电镜(SEM)和X衍射(XRD)研究一种高Zn含量Al-Zn-Mg-Cu合金在均匀化处理过程中的显微结构演变,使用扩散动力学模型推导均匀化动力学方程,用于确认最佳均匀化参数。结果表明:合金的铸态组织中存在严重偏析,非平衡共晶结构包含α(Al)、Mg(Zn,Cu,Al)2、 S(Al2CuMg)、θ(Al2Cu)和富Fe相。当前研究表明均匀化过程中没有发生Mg(Zn,Cu,Al)2相向S(Al2CuMg)相的转变,Mg(Zn,Cu,Al)2相直接回溶。随着均匀化的进行,θ(Al2Cu)相溶入基体。均匀化后富Fe相仍残留,但随着保温时间的延长,富Fe相中的Zn、Mg元素铸件减少或消失。最佳均匀化参数为440 oC×12 h 468 oC×24 h,这与均匀化动力学的分析相一致。 相似文献