首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A quaternized ammonium photoinitiator was synthesized via Michael-addition reaction and quaternization reaction, then ion-exchanged with montmorillonite (MMT). An ordered swollen structure of the intercalated montmorillonite was confirmed by X-ray powder diffraction (XRD) and thermogravimetric analysis (TGA). UV–vis absorption spectroscopy was employed to investigate the maximal absorption of photoinitiator and the intercalated montmorillonite. The modified montmorillonite was then mixed with urethane acylate oligomer (CN964) and tripropylene glycol diacrylate (TPGDA) to form Polyurethane/montmorillonite nanocomposites by photopolymerization. The photopolymerization kinetics was monitored by real time infrared spectroscopy (RTIR). The X-ray diffraction and transmission electron microscopy (TEM) results revealed that the modified montmorillonite was exfoliated and dispersed in parallel alignments as multilayers in the organic matrix.  相似文献   

2.
A series of novel waterborne hyperbranched polyurethane acrylate (WHPUA)/layered double hydroxide (LDH) nanocomposites based on hyperbranched aliphatic polyester Boltorn H20 (H20) and MgAl-LDH were successfully synthesized by in situ polymerization approach. The MgAl-LDH was firstly modified by sodium dodecyl sulfate (SDS) through the coprecipitation method, and then grafted by isophorone diisocyanate (IPDI), forming a complex with NCO groups at the surface and interlayer of LDH (LDH-DS-NCO). The residual hydroxyl groups after modification with succinic anhydride were crosslinked by the semi-adduct of IPDI reacted with HEA, and LDH-DS-NCO, followed by a neutralization reaction with triethylamine. The resulting water dispersible hyperbranched polyurethane acrylate WHPUA/LDH hybrid oligomer was then exposed to a medium pressure mercury lamp, forming a partially exfoliated WHPUA/LDH nanocomposite in the presence of a fragmental photoinitiator. The chemical structure, crystal configuration, morphology of WHPUA/LDH nanocomposite were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and high resolution transmission electron microscopy. The experimental results indicated that both the intercalated and exfoliated structures were formed in the UV cured polymer/LDH nanocomposite. The TGA results showed that the thermal stability was improved. Moreover, the pencil hardness was greatly increased, and the flexibility remained at an acceptable level for the UV cured polymer/LDH nanocomposites.  相似文献   

3.
In this work, to inquire the impact of layered double hydroxide (LDH) nanoclay on functionalized poly(vinyl chloride) (PVC) through solution intercalation method, four kinds of nanocomposites were prepared. Mg-AL LDH and the obtained functionalize PVC composites were characterized through FT-IR, UV–Vis spectroscopy, TEM, XRD, contact angle, DSC, and UTM. Obtained results revealed that the functionalized PVC uniformly dispersed in the layer of LDH nanoclay. It is revealed that partially intercalated and disordered structure formed in PVC/LDH, PVC-TS (thiosulfate)/LDH, and PVC-S (sulfate)/LDH nanocomposites, whereas fully exfoliated structures formed in the PVC-TU (thiourea)/LDH nanocomposites. Further, it has been observed that the ultimate tensile strength for all the polymer nanocomposites enhanced with increased in the LDH content. These nanocomposites further exhibited higher thermal stability by at least by 51°C higher than the pristine PVC. Along with these, further it has been found that the functionalized PVC/LDH nanocomposites are proved to be effective as thermal stabilizer for PVC processing. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48894.  相似文献   

4.
An intercalated initiator was synthesized and used for preparation of clay/polyurethane nanocomposites by UV irradiation. Organoclays containing initiator groups were prepared by cationic exchange process which acted as both suitable intercalant and photoinitiator. These modified clays were then dispersed in the mixture of urethane acrylate and hexanediol diacrylate in different loading, then situ photopolymerized. Intercalated and exfoliated nanocomposite structure were evidenced by both X‐ray diffraction spectroscopy and Transmission Electron Microscope. Thermal properties and morphologies of the resultant nanocomposites were also investigated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
UV‐curable nanocomposites were prepared by the in situ photopolymerizaton with nanosilica obtained from sol–gel process. The photoinitiator 2‐hydroxy‐2‐methyl‐1‐phenylpropane‐1‐one (1173) was anchored onto the surface of the nanosilica with or without methacryloxypropyltrimethoxysilane (MAPS) modification. The photopolymerization kinetics was studied by real‐time Fourier transform IR (RTIR), and the microstructure and properties of the nanocomposite were investigated using transmission electron microscopy and UV–visible (UV–vis) transmistance spectra. RTIR analysis indicated that the nanocomposites without MAPS had higher curing rates and final conversion than those with MAPS. The nanocomposites with an uniformal dispersion of nanosilica had high UV–vis transmittance. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Partially exfoliated ethylene vinyl acetate (EVA‐40, 40% vinyl acetate content)/layered double hydroxide (LDH) nanocomposites using organically modified layered double hydroxide (DS‐LDH) have been synthesized by solution intercalation method. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) studies of nanocomposites shows the formation of exfoliated LDH nanolayers in EVA‐40 matrix at lower DS‐LDH contents and partially intercalated/exfoliated EVA‐40/MgAl LDH nanocomposites at higher DS‐LDH contents. These EVA‐40/MgAl LDH nanocomposites demonstrate a significant improvement in tensile strength and elongation at break for 3 wt% of DS‐LDH filler loading compare to neat EVA‐40 matrix. Thermogravimetric analysis also shows that the thermal stability of the nanocomposites increases with DS‐LDH content in EVA‐40. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

7.
Mg–Al layered double hydroxide (LDH)/Ethylene vinyl acetate (EVA‐28) nanocomposites were prepared through solution intercalation method using organically modified layered double hydroxide (DS‐LDH). DS‐LDH was made by the intercalation of sodium dodecyl sulfate (SDS) ion. The structure of DS‐LDH and its nanocomposites with EVA‐28 was determined by X‐ray diffraction (XRD) and transmission electron microscope (TEM) analysis. XRD analysis shows that the original peak of DS‐LDH shifted to lower 2θ range and supports the formation of intercalated nanocomposites while, TEM micrograph shows the presence of partially exfoliated LDH nanolayers in addition to orderly stacked LDH crystallites in the polymer matrix. The presence of LDH in the nanocomposites has been confirmed by Fourier transform infrared (FTIR) analysis. The mechanical properties show significant improvement for the nanocomposite with respect to neat EVA‐28. Thermogravimetric (TGA) analysis shows that thermal stability of the nanocomposites is higher than that of EVA‐28. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1845–1851, 2007  相似文献   

8.
Low‐density polyethylene (LDPE)/silicate nanocomposites were prepared by the melt compounding and solution blend methods using unmodified LDPE polymer and layered silicates with different aspect ratio. X‐ray diffraction (XRD) analysis performed on composites obtained by dispersing the organosilicates in molten LDPE evidenced an exfoliated or partially exfoliated structure for the low aspect ratio silicate (laponite) in contrast to the high aspect ratio silicate (montmorillonite), which led to the formation of intercalated nanocomposites. With regard to the preparation method, the melt compounding method was more effective in forming exfoliated/highly intercalated LDPE nanocomposites compared with the solution blend method (using CCl4 as a solvent). A gradual increase in crystallization temperatures (Tc) with increasing laponite content for LDPE‐organolaponite nanocomposites was revealed by differential scanning calorimetry (DSC) measurements. Thermogravimetric analysis and tensile measurements results indicated that thermal stability and elastic modulus increment were more prevalent for nanocomposites prepared using organomontmorillonite as filler. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The synthesis of poly(ethylene terephthalate) (PET)/layered double hydroxide (LDH) nanocomposites through microwave methods has been investigated. To enhance the compatibility between the PET polymer and the LDH, dodecyl sulfate was intercalated in the lamellar structure. The organo‐LDH structure was confirmed by powder X‐ray diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). PET nanocomposites were prepared with 0–10 wt % of LDH content by in situ microwave‐assisted polymerization. PXRD was used to detect the formation of the exfoliated PET/LDH nanocomposites. Transmission electron microscopy was used to observe the dispersed layers and to confirm the exfoliation process. FTIR spectroscopy confirmed that the polymerization process had occurred. TG and DTA are used to study changes in thermal stability of the nanocomposites, which resulted enhanced by well dispersed LDHs layers. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Polystyrene (PS)/ZnAl layered double‐hydroxide (LDH) nanocomposites were synthesized via in situ emulsion and suspension polymerization in the presence of N‐lauroyl‐glutamate surfactant and long‐chain spacer and characterized with elemental analysis, Fourier transform infrared spectrum, X‐ray diffraction (XRD), transmission electron microscopy (TEM), and thermogravimetric analysis. The XRD and TEM results demonstrate that the exfoliated ZnAl–LDH layers were well dispersed at molecular level in the PS matrix. The completely exfoliated PS/LDH nanocomposites were obtained even at the 20 and 10 wt % LDH loadings prepared by emulsion polymerization and suspension polymerization, respectively. The PS/LDH nanocomposites with a suitable amount of LDH showed apparently enhanced thermal stability. When the 50% weight loss was selected as a comparison point, the decomposition temperature of the exfoliated PS/LDH sample prepared by emulsion polymerization with a 5 wt % LDH loading was about 28°C higher than that of pure PS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3758–3766, 2006  相似文献   

11.
Weian Zhang  Dazhu Chen  Quanbao Zhao  Yuee Fang   《Polymer》2003,44(26):7953-7961
A series of EVA/clay nanocomposites and microcomposites have been prepared via melt-blending. Using four kinds of EVA with different vinyl acetate (VA) contents: 28, 40, 50 and 80 wt%, and four kinds of clay: three are organophilic clay (OMMT) and one unfunctionalized clay (Na-MMT), the effects of different VA content of EVA and the kinds of the clay on the morphology and properties of EVA/clay nanocomposites were systematically investigated. In previous studies, there are only two distinct nanostructures to distinguish polymer/clay nanocomposites: the intercalated and the exfoliated. But in this paper, we proposed a new nanostructure—‘the wedged’ to describe the dispersion degree of clay in nanocomposites, it means the sheets of clay were partly wedged by the chains of polymer. The wedged, the intercalated and the partially exfoliated structures of EVA/clay nanocomposites were characterized by X-ray diffraction (XRD) and by high-resolution transmission electron microscopy (HRTEM). The enhanced storage modulus of EVA/clay nanocomposites was characterized by dynamic mechanical thermal analysis (DMTA). The enhanced degree in the storage modulus of the OMMT on EVA/clay nanocomposites with the partially exfoliated and intercalated structure is much higher than that with wedged structure, and that with the higher VA content is higher than that with the lower. The thermal stabilities of EVA/clay nanocomposites were also studied by thermal gravimetric analysis (TGA).  相似文献   

12.
Montmorillonite/PMMA nanocomposites were obtained by in situ photopolymerization. Methyl methacrylate was photopolymerized in the presence of modified clay minerals using thioxanthone (TX) and ethyl 4-(dimethylamino) benzoate (EDB) as photoinitiating system. The organomontmorillonites (SWy-1-C8-Mt and SWy-1-C16-Mt) were prepared by ion exchange of SW-1 Mt with octyltrimethylammonium bromide (C8) and hexyltrimethylammonium bromide (C16), respectively. X-ray diffraction indicated that clay/PMMA nanocomposites can have intercalated or exfoliated structures, or even a mixture of exfoliated and partially intercalated structure layers. The structure of each particular clay polymer nanocomposite (CPN) depends on the clay mineral loading and the solvent used for the preparation. The molecular weights of the SWy-1-C8/PMMA and SWy-1-C16/PMMA (1.0, 3.0 and 5.0%) obtained by photopolymerization in ethanol, were in the range of 1,000,000 to 3,000,000 D, and in acetonitrile the Mw values varied from 220,000 to 270,000 D. Photooxidative degradation of clay/PMMA nanocomposites has been investigated using size exclusion chromatography (SEC). Evidence was found that PMMA and CPN degrade by random chain scissions. The polydispersity increases after irradiation and the degradation rate coefficient for pure PMMA is up to 6 times larger than that for CPN. The effects of the clay mineral content, clay mineral type (clay mineral modified by surfactants with different lengths of alkyl chains) and solvent used for dispersion of organoclay on the photodegradation rate coefficients were also studied. The influence of these parameters on the photodegradation process was statistically evaluated using a two-level factorial design. The importance of the parameters was proved to follow the order: clay mineral content > clay mineral type > solvent. CPN with higher clay mineral loadings showed slower rates of oxidation. The clay mineral stabilizes the polymer against UV irradiation. SWy-1 clay mineral scatters and absorbs the incident light, decreasing the degradation rate of polymer present in the CPN.  相似文献   

13.
Polymer blending coupled with nanofillers has been widely accepted as one of the cheaper methods to develop high‐performance polymeric materials for various applications. In the present work, dodecyl sulfate intercalated Mg? Al‐based layered double hydroxide (DS‐LDH) was used as nanofiller in the synthesis of polyurethane blended with nitrile butadiene rubber (PU/NBR; 1:1 w/w) nanocomposites, which were subsequently characterized. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed the partial dispersion of Mg? Al layers in PU/NBR blends at lower filler content followed by aggregation at higher filler loading. In comparison to the neat PU/NBR blend, the tensile strength (156%) and elongation at break (21%) show maximum improvement for 1 wt% filler loading. The storage and loss moduli, thermal stability and limiting oxygen index of the nanocomposites are higher compared to the neat PU/NBR blend. Glass transition temperature and swelling measurements increase up to 3 wt% DS‐LDH loading in PU/NBR compared to either neat PU/NBR or its other corresponding nanocomposites. XRD and TEM analyses indicate the partial distribution of DS‐LDH in PU/NBR blends suggesting the formation of partially exfoliated nanocomposites. The improvements in mechanical, thermal and flame retardancy properties are much greater compared to the neat blend confirming the formation of high‐performance polymer nanocomposites. Copyright © 2009 Society of Chemical Industry  相似文献   

14.
Silicone rubber (SR)/Mg–Al layered double hydroxide (LDH) nanocomposites were prepared by the solution intercalation of SR crosslinked by a platinum‐catalyzed hydrosilylation reaction into the galleries of dodecyl sulfate intercalated layered double hydroxide (DS–LDH). X‐ray diffraction and transmission electron microscopy analysis showed the formation of exfoliated structures of organomodified LDH layers in the SR matrix. The tensile strength and elongation at break of SR/DS–LDH (5 wt %) were maximally improved by 53 and 38%, respectively, in comparison with those of the neat polymer. Thermogravimetric analysis indicated that the thermal degradation temperature of the exfoliated SR/DS–LDH (1 wt %) nanocomposites at 50% weight loss was 20°C higher than that of pure SR. Differential scanning calorimetry analysis data confirmed that the melting temperature of the nanocomposites increased at lower filler loadings (1, 3, and 5 wt %), whereas it decreased at a higher filler loading (8 wt %). The relative improvements in the solvent‐uptake resistance behavior of the SR/DS–LDH nanocomposites were also observed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

15.
Wan Duk Lee  Hyung-Mi Lim 《Polymer》2006,47(4):1364-1371
Thermal, rheological and mechanical properties of layered double hydroxide (LDHs)/PET nanocomposites were investigated. To enhance the compatibility between PET matrix and LDHs, organic modification of parent LDH having carbonate anion was carried out using various anionic surfactants such as dodecylsulfate (DS), dodecylbenzenesulfonate (DBS), and octylsulfate(OS) by rehydration process. Then, PET nanocomposites with LDH content of 0, 1.0, and 2.0 wt% were prepared by direct melt-compounding. The dispersion morphologies were observed by transmission electron microscopy and X-ray diffraction, indicating that LDH-DS were exfoliated in PET matrix. From the rheology study, there are some network structures owing to filler-filler and/or filler-matrix interactions in nanocomposite systems. Consequently, DS intercalated LDH provided good compatibility with PET molecules, resulting in exfoliated LDH-DS/PET nanocomposites having enhanced thermal and mechanical properties as compared to other nanocomposites as well as homo PET.  相似文献   

16.
Preparation and characterization of nylon 11/organoclay nanocomposites   总被引:1,自引:0,他引:1  
Tianxi Liu 《Polymer》2003,44(12):3529-3535
Nylon 11/organoclay nanocomposites have been successfully prepared by melt-compounding. X-ray diffraction and transmission electron microscopy indicate the formation of the exfoliated nanocomposites at low clay concentrations (less than 4 wt%) and a mixture of exfoliated and intercalated nanocomposites at higher clay contents. Thermogravimetric and dynamic mechanical analyses as well as tensile tests show that the degree of dispersion of nanoclay within polymer matrix plays a vital role in property improvement. The thermal stability and mechanical properties of the exfoliated nylon 11/clay nanocomposites (containing lower clay concentrations) are superior to those of the intercalated ones (with higher clay contents), due to the finer dispersion of organoclay among the matrix.  相似文献   

17.
The focus of the current study is to investigate the influence of Co–Al layered double hydroxide (LDH) on the morphological, thermal, and mechanical features of poly(methyl methacrylate) (PMMA)‐based nanocomposites. Sodium dodecyl sulfate modified Co–Al LDH was synthesized by single step coagulation method. The PMMA nanocomposites containing different loadings of nanofiller (1–7 wt %) and polystyrene‐grafted maleic anhydride compatibilizer (5 wt %) were melt intercalated via twin screw extruder and later subjected to injection molding to prepare mechanical testing samples. The different properties of PMMA nanocomposites were studied by using XRD, TEM, FTIR, DSC, TGA, tensile, flexural, impact, and flammability analysis. The result of XRD analysis suggested the exfoliated morphology of the nanocomposite while the TEM demonstrated the intercalated structure at higher loading of LDH. The thermal characterization results revealed that thermal properties were improved by the addition of Co–Al LDH, whereas the flammability test exposed that dripping was minimum at 7 wt % loading. The mechanical properties exhibited that optimum results were obtained at 1 wt % loading of Co–Al LDH. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45774.  相似文献   

18.
The effects of layered double hydroxide (LDH) composed by calcium/aluminum and magnesium/iron as divalent/trivalent cations and intercalated with dodecyl sulfate anion in the properties of poly(l-lactide) (PLLA) were analyzed. Two PLLA nanocomposites were produced by in situ intercalative bulk polymerization using 1 and 2 wt% of LDH. The PLLA nanocomposites were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, thermogravimetric analysis, differential scanning calorimetry, and ultraviolet–visible spectroscopy (UV–VIS). XRD results demonstrated that PLLA nanocomposites showed a good dispersion of LDH in the polymeric matrix, which may have caused an increase in thermal stability indicated by thermogravimetric analysis. UV–VIS analyses showed that PLLA nanocomposites presented lower transmittance values when compared to the neat PLLA, which is an interesting characteristic for plastics used in food packaging. This enhancement in the properties of PLLA nanocomposites can enlarge the range of applications of this material in several areas.  相似文献   

19.
Polypropylene (PP)/layered double hydroxide (LDH) nanocomposites were prepared via melt intercalation using dodecyl sulfate anion modified LDH and maleated PP as compatibilizing agent. Evidently the interlayer anions in LDH galleries react with maleic anhydride groups of PP-g-MA and lead to a finer dispersion of individual LDH layers in the PP matrix. The nanostructure was characterized by XRD and TEM; the examinations confirmed the nanocomposite formation with exfoliated/intercalated layered double hydroxides well distributed in the PP matrix. The nonisothermal crystallization behavior of resulting nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates. In nonisothermal crystallization kinetics, the Ozawa approach failed to describe the crystallization behavior of nanocomposites, whereas the Avrami analysis and Jeziorny method well define the crystallization behavior of PP/LDH nanocomposite. Combined Avrami and Ozawa analysis (Liu model) also found useful. The results revealed that very small amounts of LDH (1%) could accelerate the crystallization process relative to the pure PP and increase in the crystallization rates was attributed to the nucleating effect of the nanoparticles. Polarized optical microscopy (POM) observations also support the DSC results. The effective crystallization activation energy was estimated as a function of the relative degree of crystallinity using the isoconversional analysis. Overall, results indicated that the LDH particles in nanometer size might act as nucleating agent and distinctly change the type of nucleation, growth and geometry of PP crystals.  相似文献   

20.
In this study, an exfoliated montmorillonite was prepared through click chemistry from a singly azido-functionalized polyhedral oligomeric silsesquioxane derivative and a montmorillonite intercalated with propargyldimethylstearylammonium bromide. This exfoliated montmorillonite was then introduced into a benzoxazine matrix—prepared from paraformaldehyde, aniline, and phenol—to form polymer/exfoliated clay nanocomposites. Thermogravimetric analysis revealed that the pyrolysis kinetics had a close relationship with the structure of montmorillonite, the assembly process, the anchoring effect, the compatibility of the polymer and intercalator, and the char yield. The polymer/exfoliated clay nanocomposites had a same mechanism function, and the kinetic compensation effect equations revealed the pyrolysis essences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号