首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tissue remodeling contributes to ongoing inflammation and refractoriness of chronic rhinosinusitis (CRS). During this process, epithelial-mesenchymal transition (EMT) plays an important role in dysregulated remodeling and both microRNA (miR)-29b and heat shock protein 47 (HSP47) may be engaged in the pathophysiology of CRS. This study aimed to determine the role of miR-29b and HSP47 in modulating transforming growth factor (TGF)-β1-induced EMT and migration in airway epithelial cells. Expression levels of miR-29b, HSP47, E-cadherin, α-smooth muscle actin (α-SMA), vimentin and fibronectin were assessed through real-time PCR, Western blotting, and immunofluorescence staining. Small interfering RNA (siRNA) targeted against miR-29b and HSP47 were transfected to regulate the expression of EMT-related markers. Cell migration was evaluated with wound scratch and transwell migration assay. miR-29b mimic significantly inhibited the expression of HSP47 and TGF-β1-induced EMT-related markers in A549 cells. However, the miR-29b inhibitor more greatly induced the expression of them. HSP47 knockout suppressed TGF-β1-induced EMT marker levels. Functional studies indicated that TGF-β1-induced EMT was regulated by miR-29b and HSP47 in A549 cells. These findings were further verified in primary nasal epithelial cells. miR-29b modulated TGF-β1-induced EMT-related markers and migration via HSP47 expression modulation in A549 and primary nasal epithelial cells. These results suggested the importance of miR-29b and HSP47 in pathologic tissue remodeling progression in CRS.  相似文献   

3.
Acute ultraviolet (UV) B exposure causes photokeratitis and induces apoptosis in corneal cells. Geranylgeranylacetone (GGA) is an acyclic polyisoprenoid that induces expression of heat shock protein (HSP)70, a soluble intracellular chaperone protein expressed in various tissues, protecting cells against stress conditions. We examined whether induction of HSP70 has therapeutic effects on UV-photokeratitis in mice. C57 BL/6 mice were divided into four groups, GGA-treated (500 mg/kg/mouse) and UVB-exposed (400 mJ/cm2), GGA-untreated UVB-exposed (400 mJ/cm2), GGA-treated (500 mg/kg/mouse) but not exposed and naive controls. Eyeballs were collected 24 h after irradiation, and corneas were stained with hematoxylin and eosin (H&E) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). HSP70, reactive oxygen species (ROS) production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and protein kinase B (Akt) expression were also evaluated. Irradiated corneal epithelium was significantly thicker in the eyes of mice treated with GGA compared with those given the vehicle alone (p < 0.01). Significantly fewer TUNEL-positive cells were observed in the eyes of GGA-treated mice than controls after irradiation (p < 0.01). Corneal HSP70 levels were significantly elevated in corneas of mice treated with GGA (p < 0.05). ROS signal was not affected by GGA. NF-κB activation was reduced but phospho-(Ser/Ther) Akt substrate expression was increased in corneas after irradiation when treated with GGA. GGA-treatment induced HSP70 expression and ameliorated UV-induced corneal damage through the reduced NF-κB activation and possibly increased Akt phosphorilation.  相似文献   

4.
Background: Hyperinflammation is frequently associated with the chronic pain of autoimmune disease and the acute death of coronavirus disease (COVID-19) via a severe cytokine cascade. CIGB-258 (Jusvinza®), an altered peptide ligand with 3 kDa from heat shock protein 60 (HSP60), inhibits the systemic inflammation and cytokine storm, but the precise mechanism is still unknown. Objective: The protective effect of CIGB-258 against inflammatory stress of N-ε-carboxymethyllysine (CML) was tested to provide mechanistic insight. Methods: CIGB-258 was treated to high-density lipoproteins (HDL) and injected into zebrafish and its embryo to test a putative anti-inflammatory activity under presence of CML. Results: Treatment of CML (final 200 μM) caused remarkable glycation of HDL with severe aggregation of HDL particles to produce dysfunctional HDL, which is associated with a decrease in apolipoprotein A-I stability and lowered paraoxonase activity. Degradation of HDL3 by ferrous ions was attenuated by a co-treatment with CIGB-258 with a red-shift of the Trp fluorescence in HDL. A microinjection of CML (500 ng) into zebrafish embryos resulted in the highest embryo death rate, only 18% of survivability with developmental defects. However, co-injection of CIGB-258 (final 1 ng) caused the remarkable elevation of survivability around 58%, as well as normal developmental speed. An intraperitoneal injection of CML (final 250 μg) into adult zebrafish resulted acute paralysis, sudden death, and laying down on the bottom of the cage with no swimming ability via neurotoxicity and inflammation. However, a co-injection of CIGB-258 (1 μg) resulted in faster recovery of the swimming ability and higher survivability than CML alone injection. The CML alone group showed 49% survivability, while the CIGB-258 group showed 97% survivability (p < 0.001) with a remarkable decrease in hepatic inflammation up to 50%. A comparison of efficacy with CIGB-258, Infliximab (Remsima®), and Tocilizumab (Actemra®) showed that the CIGB-258 group exhibited faster recovery and swimming ability with higher survivability than those of the Infliximab group. The CIGB-258 group and Tocilizumab group showed the highest survivability, the lowest plasma total cholesterol and triglyceride level, and the infiltration of inflammatory cells, such as neutrophils in hepatic tissue. Conclusion: CIGB-258 ameliorated the acute neurotoxicity, paralysis, hyperinflammation, and death induced by CML, resulting in higher survivability in zebrafish and its embryos by enhancing the HDL structure and functionality.  相似文献   

5.
Non-alcoholic fatty liver disease (NAFLD), the most common cause of chronic liver disease, consists of fat deposited (steatosis) in the liver due to causes besides excessive alcohol use. The folding activity of heat shock protein 60 (HSP60) has been shown to protect mitochondria from proteotoxicity under various types of stress. In this study, we investigated whether HSP60 could ameliorate experimental high-fat diet (HFD)-induced obesity and hepatitis and explored the potential mechanism in mice. The results uncovered that HSP60 gain not only alleviated HFD-induced body weight gain, fat accumulation, and hepatocellular steatosis, but also glucose tolerance and insulin resistance according to intraperitoneal glucose tolerance testing and insulin tolerance testing in HSP60 transgenic (HSP60Tg) compared to wild-type (WT) mice by HFD. Furthermore, overexpression of HSP60 in the HFD group resulted in inhibited release of mitochondrial dsRNA (mt-dsRNA) compared to WT mice. In addition, overexpression of HSP60 also inhibited the activation of toll-like receptor 3 (TLR3), melanoma differentiation-associated gene 5 (MDA5), and phosphorylated-interferon regulatory factor 3 (p-IRF3), as well as inflammatory biomarkers such as mRNA of il-1β and il-6 expression in the liver in response to HFD. The in vitro study also confirmed that the addition of HSP-60 mimics in HepG2 cells led to upregulated expression level of HSP60 and restricted release of mt-dsRNA, as well as downregulated expression levels of TLR3, MDA5, and pIRF3. This study provides novel insight into a hepatoprotective effect, whereby HSP60 inhibits the release of dsRNA to repress the TLR3/MDA5/pIRF3 pathway in the context of NAFLD or hepatic inflammation. Therefore, HSP60 may serve as a possible therapeutic target for improving NAFLD.  相似文献   

6.
Pardosa pseudoannulata (P. pseudoannulata) is an essential natural predatory enemy in rice ecosystems. The fluctuating climate may cause them to experience heat stress, whereas heat shock proteins (HSPs) and antioxidant enzymes help resist heat damage. Herein, we cloned and characterized the full-length genes PpHSP27, PpHSP60, and PpHSC70 from P. pseudoannulata. Changes in gene expression levels and superoxide dismutase (SOD), catalase (CAT), and glutathione transferase (GST) activities in adult male and female P. pseudoannulata were measured at different stress exposure times and temperatures. We found that the abovementioned HSP genes belong to the sHSP, HSP60, and HSP70 families. The expression of the three HSP genes and the activities of SOD, CAT, and GST were significantly upregulated with the increasing stress temperature and time. The knockdown of the three HSP genes via RNA interference significantly decreased the survival rate of male and female P. pseudoannulata during high temperature stress. Thus, PpHSP27, PpHSP60, and PpHSC70 play an important role in the heat tolerance of P. pseudoannulata, and SOD, CAT, and GST enable recovery heat stress-induced oxidative damage. Their changes and regulation during high temperature stress can improve spiders’ adaptability in the field and enhance the biological control of environmental pests.  相似文献   

7.
GABARAP (γ-aminobutyric acid type A receptor-associated protein) and its paralogues GABARAPL1 and GABARAPL2 comprise a subfamily of autophagy-related Atg8 proteins. They are studied extensively regarding their roles during autophagy. Originally, however, especially GABARAPL2 was discovered to be involved in intra-Golgi transport and homotypic fusion of post-mitotic Golgi fragments. Recently, a broader function of mammalian Atg8s on membrane trafficking through interaction with various soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (SNAREs) was suggested. By immunostaining and microscopic analysis of the Golgi network, we demonstrate the importance of the presence of individual GABARAP-type proteins on Golgi morphology. Furthermore, triple knockout (TKO) cells lacking the whole GABARAP subfamily showed impaired Golgi-dependent vesicular trafficking as assessed by imaging of fluorescently labelled ceramide. With the Golgi apparatus being central within the secretory pathway, we sought to investigate the role of the GABARAP-type proteins for cell surface protein trafficking. By analysing the surfaceome composition of TKOs, we identified a subset of cell surface proteins with altered plasma membrane localisation. Taken together, we provide novel insights into an underrated aspect of autophagy-independent functions of the GABARAP subfamily and recommend considering the potential impact of GABARAP subfamily proteins on a plethora of processes during experimental analysis of GABARAP-deficient cells not only in the autophagic context.  相似文献   

8.
Hepatitis C virus (HCV) is one of the main triggers of chronic liver disease. Despite tremendous progress in the HCV field, there is still no vaccine against this virus. Potential vaccines can be based on its recombinant proteins. To increase the humoral and, especially, cellular immune response to them, more effective adjuvants are needed. Here, we evaluated a panel of compounds as potential adjuvants using the HCV NS5B protein as an immunogen. These compounds included inhibitors of polyamine biosynthesis and urea cycle, the mTOR pathway, antioxidants, and cellular receptors. A pronounced stimulation of cell proliferation and interferon-γ (IFN-γ) secretion in response to concanavalin A was shown for antioxidant N-acetylcysteine (NAC), polyamine biosynthesis inhibitor 2-difluoromethylornithine (DFMO), and TLR9 agonist CpG ODN 1826 (CpG). Their usage during the immunization of mice with the recombinant NS5B protein significantly increased antibody titers, enhanced lymphocyte proliferation and IFN-γ production. NAC and CpG decreased relative Treg numbers; CpG increased the number of myeloid-derived suppressor cells (MDSCs), whereas neither NAC nor DFMO affected MDSC counts. NAC and DFMO suppressed NO and interleukin 10 (IL-10) production by splenocytes, while DFMO increased the levels of IL-12. This is the first evidence of immunomodulatory activity of NAC and DFMO during prophylactic immunization against infectious diseases.  相似文献   

9.
Fumonisins are protein serine/threonine phosphatase inhibitors and potent inhibitors of sphingosine N-acyltransferase (ceramide synthase) disrupting de novo sphingolipid biosynthesis. The experiment was conducted to evaluate the effects of fumonisins (FB) exposure from the 7th day of pregnancy to parturition on offspring bone development. The rats were randomly allocated to either a control group (n = 6), not treated with FBs, or to one of the two groups intoxicated with FBs (either at 60 mg FB/kg b.w. or at 90 mg FB/kg b.w. Numerous negative, offspring sex-dependent effects of maternal FB exposure were observed with regards to the histomorphometry of trabecular bone. These effects were due to FB-inducted alterations in bone metabolism, as indicated by changes in the expression of selected proteins involved in bone development: tissue inhibitor of metalloproteinases 2 (TIMP-2), matrix metalloproteinase 8 (MMP-8), matrix metalloproteinase 13 (MMP-13), and vascular endothelial growth factor (VEGF). The immunolocalization of MMPs and TIMP-2 was performed in trabecular and compact bone, as well as articular and growth plate cartilages. Based on the results, it can be concluded that the exposure of pregnant dams to FB negatively affected the expression of certain proteins responsible for bone matrix degradation in newborns prenatally exposed to FB in a dose- and sex-dependent manner.  相似文献   

10.
Helicobacter pylori neutrophil-activating protein (HP-NAP)-induced production of reactive oxygen species (ROS) by neutrophils and monocytes is regulated by pertussis toxin (PTX)-sensitive G proteins, whereas HP-NAP-induced cytokine secretion by monocytes is mediated by Toll-like receptor 2 (TLR2). However, it is unclear whether TLR2 participates in HP-NAP-induced cytokine secretion by neutrophils. Here, all-trans retinoic acid (ATRA)-induced differentiated HL-60 cells were first employed as a neutrophil model to investigate the molecular mechanisms underlying neutrophil responses to HP-NAP. HP-NAP-induced ROS production in ATRA-induced differentiated HL-60 cells is mediated by the PTX-sensitive heterotrimeric G protein-dependent activation of extracellular signal-regulated kinase 1/2 and p38-mitogen-activated protein kinase, which is consistent with the findings reported for human neutrophils. Next, whether TLR2 participated in HP-NAP-induced secretion of interleukin-8 (IL-8) was investigated in neutrophils and ATRA-induced differentiated HL-60 cells. In both cells, TLR2 participated in HP-NAP-induced IL-8 secretion but not HP-NAP-induced ROS production. Interestingly, PTX-sensitive G proteins also contributed to the HP-NAP-induced secretion of IL-8 from neutrophils and the differentiated HL-60 cells. Our ELISA-based binding assay further revealed the competitive binding of Pam3CSK4, a TLR2 agonist, and HP-NAP to TLR2, which suggests the presence of specific and direct interactions between HP-NAP and TLR2. Thus, HP-NAP directly interacts with and activates TLR2 to induce IL-8 secretion in neutrophils and ATRA-induced differentiated HL-60 cells.  相似文献   

11.
12.
4,4’-Dimethylaminorex (4,4’-DMAR) is a new synthetic stimulant, and only a little information has been made available so far regarding its pharmaco-toxicological effects. The aim of this study was to investigate the effects of the systemic administration of both the single (±)cis (0.1–60 mg/kg) and (±)trans (30 and 60 mg/kg) stereoisomers and their co-administration (e.g., (±)cis at 1, 10 or 60 mg/kg + (±)trans at 30 mg/kg) in mice. Moreover, we investigated the effect of 4,4′-DMAR on the expression of markers of oxidative/nitrosative stress (8-OHdG, iNOS, NT and NOX2), apoptosis (Smac/DIABLO and NF-κB), and heat shock proteins (HSP27, HSP70, HSP90) in the cerebral cortex. Our study demonstrated that the (±)cis stereoisomer dose-dependently induced psychomotor agitation, sweating, salivation, hyperthermia, stimulated aggression, convulsions and death. Conversely, the (±)trans stereoisomer was ineffective whilst the stereoisomers’ co-administration resulted in a worsening of the toxic (±)cis stereoisomer effects. This trend of responses was confirmed by immunohistochemical analysis on the cortex. Finally, we investigated the potentially toxic effects of stereoisomer co-administration by studying urinary excretion. The excretion study showed that the (±)trans stereoisomer reduced the metabolism of the (±)cis form and increased its amount in the urine, possibly reflecting its increased plasma levels and, therefore, the worsening of its toxicity.  相似文献   

13.
The aim of the study was to investigate the effect of a sustained release of bone morphogenetic protein2 (BMP-2) incorporated in a polymeric implant coating on bone healing. In vitro analysis revealed a sustained, but incomplete BMP-2 release until Day 42. For the in vivo study, the rat tibia osteotomy was stabilized either with control or BMP-2 coated wires, and the healing progress was followed by micro computed tomography (μCT), biomechanical testing and histology at Days 10, 28, 42 and 84. MicroCT showed an accelerated formation of mineralized callus, as well as remodeling and an increase of mineralized/total callus volume (p = 0.021) at Day 42 in the BMP-2 group compared to the control. Histology revealed an increased callus mineralization at Days 42 and 84 (p = 0.006) with reduced cartilage at Day 84 (p = 0.004) in the BMP-2 group. Biomechanical stiffness was significantly higher in the BMP-2 group (p = 0.045) at Day 42. In summary, bone healing was enhanced after sustained BMP-2 application compared to the control. Using the same drug delivery system, but a burst release of BMP-2, a previous published study showed a similar positive effect on bone healing. Distinct differences in the healing outcome might be explained due to the different BMP release kinetics and dosages. However, further studies are necessary to adapt the optimal release profiles to physiological mechanisms.  相似文献   

14.
Disturbance in a differentiation program of skeletal stem cells leads to indecorous skeletogenesis. Growing evidence suggests that a fine-tuning of ubiquitin-mediated protein degradation is crucial for skeletal stem cells to maintain their stemness and osteogenic potential. Here, we demonstrate that the deubiquitinating enzyme (DUB) ubiquitin-specific protease 8 (USP8) stabilizes the Wnt receptor frizzled 5 (FZD5) by preventing its lysosomal degradation. This pathway is essential for Wnt/β-catenin signaling and the differentiation of osteoprogenitors to mature osteoblasts. Accordingly, deletion of USP8 in osteoprogenitors (Usp8Osx) resulted in a near-complete blockade in skeletal mineralization, similar to that seen in mice with defective Wnt/β-catenin signaling. Likewise, transplanting USP8-deficient osteoprogenitors under the renal capsule in wild-type secondary hosts did not to induce bone formation. Collectively, this study unveils an essential role for the DUB USP8 in Wnt/β-catenin signaling in osteoprogenitors and osteogenesis during skeletal development.  相似文献   

15.
We previously showed that Lactiplantibacillus plantarum K8 and its cell wall components have immunoregulatory effects. In this study, we demonstrate that pre-treatment of L. plantarum K8 lysates reduced LPS-induced TNF-α production in THP-1 cells by down-regulating the early signals of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The down-regulation of signals may be caused by the induction of negative regulators involved in toll-like receptor (TLR)-mediated signaling. However, co-treatment with high concentrations of L. plantarum K8 lysates and lipopolysaccharide (LPS) activated the late signaling of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB pathways and resulted in the induction of absent in melanoma 2 (AIM2) inflammasome-mediated interleukin (IL)-1β secretion. Intraperitoneal injection of L. plantarum K8 lysates in LPS-induced endotoxin shock mice alleviated mortality and reduced serum tumor-necrosis factor (TNF)-α, IL-1β, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. In addition, the mRNA levels of TNF-α, IL-1β, and IL-6 decreased in livers from mice injected with L. plantarum K8 followed by LPS. Hematoxylin and eosin (H&E) staining of the liver showed that the cell size was enlarged by LPS injection and slightly reduced by L. plantarum K8 lysate pre-injection followed by LPS injection. Macrophage infiltration of the liver also decreased in response to the combination injection compared with mice injected with only LPS. Taken together, our results show that although L. plantarum K8 lysates differentially regulated the production of LPS-induced inflammatory cytokines in THP-1 cells, the lysates inhibited overall inflammation in mice. Thus, this study suggests that L. plantarum K8 lysates could be developed as a substance that modulates immune homeostasis by regulating inflammation.  相似文献   

16.
17.
18.
Cardiovascular diseases (CVDs) are the leading cause of death globally, representing approximately 32% of all deaths worldwide. Molecular chaperones are involved in heart protection against stresses and age-mediated accumulation of toxic misfolded proteins by regulation of the protein synthesis/degradation balance and refolding of misfolded proteins, thus supporting the high metabolic demand of the heart cells. Heat shock protein 90 (HSP90) is one of the main cardioprotective chaperones, represented by cytosolic HSP90a and HSP90b, mitochondrial TRAP1 and ER-localised Grp94 isoforms. Currently, the main way to study the functional role of HSPs is the application of HSP inhibitors, which could have a different way of action. In this review, we discussed the recently investigated role of HSP90 proteins in cardioprotection, atherosclerosis, CVDs development and the involvements of HSP90 clients in the activation of different molecular pathways and signalling mechanisms, related to heart ageing.  相似文献   

19.
Mangiferin is a natural immunomodulator found in plants including mango trees. The effects of mangiferin on chondrogenesis and cartilage repair have not yet been reported. This study was designed to determine the effect of mangiferin on chondrogenic differentiation in IL-1β-stimulated mesenchymal stem cells (MSCs) from subchondral bone and to explore the mechanisms underlying these effects. MSCs were isolated from the subchondral bone of rabbit and treated with mangiferin alone and/or interleukin-1β (IL-1β). Mangiferin induced chondrogenic differentiation in MSCs by upregulating transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, and BMP-4 and several key markers of chondrogenesis, including sex-determining region Y–box (SRY-box) containing gene 9 (SOX9), type 2α1 collagen (Col2α1), cartilage link protein, and aggrecan. In IL-1β-stimulated MSCs, mangiferin significantly reversed the production of TGF-β, BMP-2, BMP-4, SOX9, Col2α1, cartilage link protein, and aggrecan, as well as matrix metalloproteinase (MMP)-1, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5). Mangiferin upregulated the phosphorylation of Smad 2, Smad 3, Smad 1/5/8, and SOX9 in IL-1β-stimulated MSCs. In the presence of mangiferin, SOX9 siRNA suppressed the activation of Smad 2, Smad 3, Smad 1/5/8, aggrecan, and Col2α1 expression. In conclusion, mangiferin exhibits both chondrogenic and chondroprotective effects on damaged MSCs and mediates these effects by targeting multiple aspects of the Smad and SOX9 signaling pathways.  相似文献   

20.
IL-8/MCP-1 act as neutrophil/monocyte chemoattractants, respectively. Oxidative stress emerges as a key player in the pathophysiology of obesity. However, it remains unclear whether the TNF-α/oxidative stress interplay can trigger IL-8/MCP-1 expression and, if so, by which mechanism(s). IL-8/MCP-1 adipose expression was detected in lean, overweight, and obese individuals, 15 each, using immunohistochemistry. To detect the role of reactive oxygen species (ROS)/TNF-α synergy as a chemokine driver, THP-1 cells were stimulated with TNF-α, with/without H2O2 or hypoxia. Target gene expression was measured by qRT-PCR, proteins by flow cytometry/confocal microscopy, ROS by DCFH-DA assay, and signaling pathways by immunoblotting. IL-8/MCP-1 adipose expression was significantly higher in obese/overweight. Furthermore, IL-8/MCP-1 mRNA/protein was amplified in monocytic cells following stimulation with TNF-α in the presence of H2O2 or hypoxia (p ˂ 0.0001). Synergistic chemokine upregulation was related to the ROS levels, while pre-treatments with NAC suppressed this chemokine elevation (p ≤ 0.01). The ROS/TNF-α crosstalk involved upregulation of CHOP, ERN1, HIF1A, and NF-κB/ERK-1,2 mediated signaling. In conclusion, IL-8/MCP-1 adipose expression is elevated in obesity. Mechanistically, ROS/TNF-α crosstalk may drive expression of these chemokines in monocytic cells by inducing ER stress, HIF1A stabilization, and signaling via NF-κB/ERK-1,2. NAC had inhibitory effect on oxidative stress-driven IL-8/MCP-1 expression, which may have therapeutic significance regarding meta-inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号