共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodynamic therapy (PDT), as a novel technique, has been extensively employed in cancer treatment by utilizing reactive oxygen species (ROS) to kill malignant cells. However, most photosensitizers (PSs) are short of ROS yield and affect the therapeutic effect of PDT. Thus, there is a substantial demand for the development of novel PSs for PDT to advance its clinical translation. In this study, we put forward a new strategy for PS synthesis via modifying graphene quantum dots (GQDs) on the surface of rare-earth elements doped upconversion nanoparticles (UCNPs) to produce UCNPs@GQDs with core-shell structure. This new type of PSs combined the merits of UCNPs and GQDs and produced ROS efficiently under near-infrared light excitation to trigger the PDT process. UCNPs@GQDs exhibited high biocompatibility and obvious concentration-dependent PDT efficiency, shedding light on nanomaterials-based PDT development. 相似文献
2.
Shujin Lin Chun Liu Xiao Han Haowei Zhong Cui Cheng 《International journal of molecular sciences》2021,22(4)
Photodynamic therapy (PDT) is a promising therapy due to its efficiency and accuracy. The photosensitizer is delivered to the target lesion and locally activated. Viral nanoparticles (VNPs) have been explored as delivery vehicles for PDT in recent years because of their favorable properties, including simple manufacture and good safety profile. They have great potential as drug delivery carriers in medicine. Here, we review the development of PDT photosensitizers and discuss applications of VNP-mediated photodynamic therapies and the performance of VNPs in the treatment of tumor cells and antimicrobial therapy. Furthermore, future perspectives are discussed for further developing novel viral nanocarriers or improving existing viral vectors. 相似文献
3.
Guojing Li Mengqian Yang Qilong Sha Li Li Xiaogang Luo Fengshou Wu 《International journal of molecular sciences》2022,23(22)
Organic nanomaterials have attracted considerable attention in the area of photodynamic and photothermal therapy, owing to their outstanding biocompatibility, potential biodegradability, well-defined chemical structure, and easy functionalization. However, it is still a challenge to develop a single organic molecule that obtains both photothermal and photodynamic effects. In this contribution, we synthesized a new boron-dipyrromethene (BODIPY)-based derivative (DPBDP) with an acceptor–donor–acceptor (A-D-A) structure by coupling 3,6-di(2-thienyl)-2,5-dihydropyrrolo [3,4-c] pyrrole-1,4-dione (DPP) and BODIPY. To enhance the hydrophilicity of the BODIPY derivative, the polyethylene glycol (PEG) chains were introduced to the meso- position of BODIPY core. The amphiphilic DPBDP was then self-assembled into related nanoparticles (DPBDP NPs) with improved hydrophilicity and enhanced absorbance in the NIR region. DPBDP NPs could simultaneously generate the singlet oxygen (1O2) and heat under the irradiation of a single laser (690 nm). The 1O2 quantum yield and photothermal conversion efficiency (PCE) of DPBDP NPs were calculated to be 14.2% and 26.1%, respectively. The biocompatibility and phototherapeutic effect of DPBDP NPs were evaluated through cell counting kit-8 (CCK-8) assay. Under irradiation of 690 nm laser (1.0 W/cm2), the half maximal inhibitory concentration (IC50) of DPBDP NPs was calculated to be 16.47 µg/mL. Thus, the as-prepared DPBDP NPs could be acted as excellent candidates for synergistic photodynamic/photothermal therapy. 相似文献
4.
Tilahun Ayane Debele Sydney Peng Hsieh-Chih Tsai 《International journal of molecular sciences》2015,16(9):22094-22136
Photodynamic therapy (PDT) is a non-invasive combinatorial therapeutic modality using light, photosensitizer (PS), and oxygen used for the treatment of cancer and other diseases. When PSs in cells are exposed to specific wavelengths of light, they are transformed from the singlet ground state (S0) to an excited singlet state (S1–Sn), followed by intersystem crossing to an excited triplet state (T1). The energy transferred from T1 to biological substrates and molecular oxygen, via type I and II reactions, generates reactive oxygen species, (1O2, H2O2, O2*, HO*), which causes cellular damage that leads to tumor cell death through necrosis or apoptosis. The solubility, selectivity, and targeting of photosensitizers are important factors that must be considered in PDT. Nano-formulating PSs with organic and inorganic nanoparticles poses as potential strategy to satisfy the requirements of an ideal PDT system. In this review, we summarize several organic and inorganic PS carriers that have been studied to enhance the efficacy of photodynamic therapy against cancer. 相似文献
5.
Ivan Mfouo-Tynga Heidi Abrahamse 《International journal of molecular sciences》2015,16(5):10228-10241
The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events. 相似文献
6.
Sarah Reagen Yingfen Wu Di Sun Carlos Munoz Nuri Oncel Colin Combs Julia Xiaojun Zhao 《International journal of molecular sciences》2022,23(23)
Recently, nano-based cancer therapeutics have been researched and developed, with some nanomaterials showing anticancer properties. When it comes to cancer treatment, graphene quantum dots (GQDs) contain the ability to generate 1O2, a reactive oxidative species (ROS), allowing for the synergistic imaging and photodynamic therapy (PDT) of cancer. However, due to their small particle size, GQDs struggle to remain in the target area for long periods of time in addition to being poor drug carriers. To address this limitation of GQDs, hollow mesoporous silica nanoparticles (hMSNs) have been extensively researched for drug delivery applications. This project investigates the utilization and combination of biomass-derived GQDs and Stöber silica hMSNs to make graphene quantum dots-hollow mesoporous silica nanoparticles (GQDs-hMSNs) for fluorescent imaging and dual treatment of cancer via drug delivery and photodynamic therapy (PDT). Although the addition of hMSNs made the newly synthesized nanoparticles slightly more toxic at higher concentrations, the GQDs-hMSNs displayed excellent drug delivery using fluorescein (FITC) as a mock drug, and PDT treatment by using the GQDs as a photosensitizer (PS). Additionally, the GQDs retained their fluorescence through the surface binding to hMSNs, allowing them to still be used for cell-labeling applications. 相似文献
7.
Ruth Prieto-Montero Alejandro Prieto-Castaeda Alberto Katsumiti Miren P. Cajaraville Antonia R. Agarrabeitia María J. Ortiz Virginia Martínez-Martínez 《International journal of molecular sciences》2021,22(12)
BODIPY dyes have recently attracted attention as potential photosensitizers. In this work, commercial and novel photosensitizers (PSs) based on BODIPY chromophores (haloBODIPYs and orthogonal dimers strategically designed with intense bands in the blue, green or red region of the visible spectra and high singlet oxygen production) were covalently linked to mesoporous silica nanoparticles (MSNs) further functionalized with PEG and folic acid (FA). MSNs approximately 50 nm in size with different functional groups were synthesized to allow multiple alternatives of PS-PEG-FA decoration of their external surface. Different combinations varying the type of PS (commercial Rose Bengal, Thionine and Chlorine e6 or custom-made BODIPY-based), the linkage design, and the length of PEG are detailed. All the nanosystems were physicochemically characterized (morphology, diameter, size distribution and PS loaded amount) and photophysically studied (absorption capacity, fluorescence efficiency, and singlet oxygen production) in suspension. For the most promising PS-PEG-FA silica nanoplatforms, the biocompatibility in dark conditions and the phototoxicity under suitable irradiation wavelengths (blue, green, or red) at regulated light doses (10–15 J/cm2) were compared with PSs free in solution in HeLa cells in vitro. 相似文献
8.
Dr. Hsin Her Yu Dr. Chia-Hua Lin Yi-Chun Chen Hung-Hsiang Chen Yu-Jing Lin Dr. Kun-Yi Andrew Lin 《ChemMedChem》2020,15(17):1645-1651
Phototherapy has the advantages of minimal invasion, few side effects, and improved accuracy for cancer therapy. The application of a polydopamine (PDA)-modified nano zero-valent iron (nZVI@PDA) as a new synergistic agent in combination with photodynamic/photothermal (PD/PT) therapy to kill cancer cells is discussed here. The nZVI@PDA offered high light-to-heat conversion and ROS generation efficiency under near-infrared (NIR) irradiation (808 nm), thus leading to irreversible damage to nZVI@PDA-treated MCF-7 cells at low concentration, without inducing apoptosis in normal cells. Irradiation of nZVI@PDA using an NIR laser converted the energy of the photons to heat and ROS. Our results showed that modification of the PDA on the surface of nZVI can improve the biocompatibility of the nZVI@PDA. This work integrated the PD and PT effects into a single nanodevice to afford a highly efficient cancer treatment. Meanwhile, nZVI@PDA, which combines the advantages of PDA and nZVI, displayed excellent biocompatibility and tumoricidal ability, thus suggesting its huge potential for future clinical research in cancer therapy. 相似文献
9.
Beata Joanna Mossakowska Anna Fabisiewicz Barbara Tudek Janusz Aleksander Siedlecki 《International journal of molecular sciences》2022,23(23)
Photodynamic therapy (PDT) is a low-invasive treatment method that can be used to treat VIN patients. A photosensitizer (PS) applied to a patient is activated with use of the appropriate wavelength of light, which in an oxygen environment leads to the formation of a reactive oxygen species (ROS) that destroys the tumor. However, cells can protect themselves against these cytotoxic products by increasing their antioxidant mechanisms and repair capacity. Changes in the cytoskeleton may also influence resistance to PDT. Our results revealed that PDT-resistant cells changed the amount of ROS. Cells resistant to PDT A-431 exhibited a decreased ROS level and showed higher viability after oxidizing agent treatment. Resistant Cal-39 cells exhibited a decreased O2− level but increased other ROS. This provides protection from PDT but not from other oxidizing agents. Moreover, PDT leads to alterations in the cytoskeleton that may result in an epithelial-mesenchymal transition (EMT) or increased adhesion. Both EMT and cell adhesion may activate signaling pathways involved in survival. This means that resistance to PDT in vulvar cancer may be at least in part a result of changes in ROS level and alterations in the cytoskeleton. 相似文献
10.
Nokuphila Winifred Nompumelelo Simelane Cherie Ann Kruger Heidi Abrahamse 《International journal of molecular sciences》2021,22(18)
Colorectal cancer (CRC) is an aggressive cancer that remains a challenge to diagnose and treat. Photodynamic diagnosis (PDD) and therapy (PDT) are novel alternative techniques, which can enhance early diagnosis, as well as elicit tumor cell death. This is accomplished through photosensitizer (PS) mediated fluorescence and cytotoxic reactive oxygen species activation upon laser light irradiation excitation at specific low and high range wavelengths, respectively. However, the lack of PS target tumor tissue specificity often hampers these techniques. This study successfully fabricated a bioactive nanoconjugate, ZnPcS4-AuNP-S-PEG5000-NH2-Anti-GCC mAb (BNC), based upon a polyethylene glycol-gold nanoparticle, which was multi-functionalized with a fluorescent PDT metalated zinc phthalocyanine PS, and specific anti-GCC targeting antibodies, to overcome CRC PDD and PDT challenges. The BNC was found to be stable and showed selectively improved subcellular accumulation within targeted CRC for improved PDD and PDT outcomes in comparison to healthy in vitro cultured cells. Additionally, the BNC reported significantly higher late apoptotic PDT-induced CRC cell death rates (34% ***) when compared to PDT PS administration alone (15% *). These results indicated that the improved PDD and PDT outcomes were due to the specific PS accumulation in CRC cells through nanoparticle carriage and bioactive anti-GCC targeting. 相似文献
11.
Eric Chekwube Aniogo Blassan P. George Heidi Abrahamse 《International journal of molecular sciences》2021,22(24)
Photodynamic therapy (PDT) is currently enjoying considerable attention as the subject of experimental research to treat resistant cancers. The preferential accumulation of a non-toxic photosensitizer (PS) in different cellular organelles that causes oxidative damage by combining light and molecular oxygen leads to selective cell killing. However, one major setback, common among other treatment approaches, is tumor relapse and the development of resistance causing treatment failure. PDT-mediated resistance could result from increased drug efflux and decreased localization of PS, reduced light exposure, increased DNA damage repair, and altered expression of survival genes. This review highlights the essential insights of PDT reports in which PDT resistance was observed and which identified some of the molecular effectors that facilitate the development of PDT resistance. We also discuss different perceptions of PDT and how its current limitations can be overturned to design improved cancer resistant treatments. 相似文献
12.
The advent of cancer therapeutics brought a paradigm shift from conventional therapy to precision medicine. The new therapeutic modalities accomplished through the properties of nanomaterials have extended their scope in cancer therapy beyond conventional drug delivery. Nanoparticles can be channeled in cancer therapy to encapsulate active pharmaceutical ingredients and deliver them to the tumor site in a more efficient manner. This review enumerates various types of nanoparticles that have entered clinical trials for cancer treatment. The obstacles in the journey of nanodrug from clinic to market are reviewed. Furthermore, the latest developments in using nanoparticles in cancer therapy are also highlighted. 相似文献
13.
Zhi-Long Chen Yun Sun Peng Huang Xiao-Xia Yang Xing-Ping Zhou 《Nanoscale research letters》2009,4(5):400-408
Abstract As a fast developing alternative of traditional therapeutics, photodynamic therapy (PDT) is an effective, noninvasive, nontoxic
therapeutics for cancer, senile macular degeneration, and so on. But the efficacy of PDT was compromised by insufficient selectivity
and low solubility. In this study, novel multifunctional silica-based magnetic nanoparticles (SMNPs) were strategically designed
and prepared as targeting drug delivery system to achieve higher specificity and better solubility. 2,7,12,18-Tetramethyl-3,8-di-(1-propoxyethyl)-13,17-bis-(3-hydroxypropyl)
porphyrin, shorted as PHPP, was used as photosensitizer, which was first synthesized by our lab with good PDT effects. Magnetite
nanoparticles (Fe3O4) and PHPP were incorporated into silica nanoparticles by microemulsion and sol–gel methods. The prepared nanoparticles were
characterized by transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy and fluorescence
spectroscopy. The nanoparticles were approximately spherical with 20–30 nm diameter. Intense fluorescence of PHPP was monitored
in the cytoplasm of SW480 cells. The nanoparticles possessed good biocompatibility and could generate singlet oxygen to cause
remarkable photodynamic anti-tumor effects. These suggested that PHPP-SMNPs had great potential as effective drug delivery
system in targeting photodynamic therapy, diagnostic magnetic resonance imaging and magnetic hyperthermia therapy.
Graphical Abstract
Novel multifunctional photosensitizer loaded magnetic silica nanoparticles were strategically prepared with low toxicity,
good biocompatibility and remarkable photodynamic anti-tumor efficacy. The nanoparticles were believed to be of great value
as drug delivery system in targeting photodynamic therapy, diagnostic magnetic resonance imaging and magnetic hyperthermia
therapy.
相似文献
14.
Ludmila
rsk Zuzana Mal Kateina Langov Luk Malina Svatopluk Binder Robert Bajgar Petr Henke Jií Mosinger Hana Kolov 《International journal of molecular sciences》2022,23(7)
Clinically approved photodynamic therapy (PDT) is a minimally invasive treatment procedure that uses three key components: photosensitization, a light source, and tissue oxygen. However, the photodynamic effect is limited by both the photophysical properties of photosensitizers as well as their low selectivity, leading to damage to adjacent normal tissue and/or inadequate biodistribution. Nanoparticles (NPs) represent a new option for PDT that can overcome most of the limitations of conventional photosensitizers and can also promote photosensitizer accumulation in target cells through enhanced permeation and retention effects. In this in vitro study, the photodynamic effect of TPP photosensitizers embedded in polystyrene nanoparticles was observed on the non-tumor NIH3T3 cell line and HeLa and G361 tumor cell lines. The efficacy was evaluated by viability assay, while reactive oxygen species production, changes in membrane mitochondrial potential, and morphological changes before and after treatment were imaged by atomic force microscopy. The tested nanoparticles with embedded TPP were found to become cytotoxic only after activation by blue light (414 nm) due to the production of reactive oxygen species. The photodynamic effect observed in this evaluation was significantly higher in both tumor lines than the effect observed in the non-tumor line, and the resulting phototoxicity depended on the concentration of photosensitizer and irradiation time. 相似文献
15.
Nokuphila Winifred Nompumelelo Simelane Heidi Abrahamse 《International journal of molecular sciences》2021,22(22)
Colorectal cancer (CRC) involving a malignant tumour remains one of the greatest contributing causes of fatal mortality and has become the third globally ranked malignancy in terms of cancer-associated deaths. Conventional CRC treatment approaches such as surgery, radiation, and chemotherapy are the most utilized approaches to treat this disease. However, they are limited by low selectivity and systemic toxicity, so they cannot completely eradicate this disease. Photodynamic therapy (PDT) is an emerging therapeutic modality that exerts selective cytotoxicity to cancerous cells through the activation of photosensitizers (PSs) under light irradiation to produce cytotoxic reactive oxygen species (ROS), which then cause cancer cell death. Cumulative research findings have highlighted the significant role of traditional PDT in CRC treatment; however, the therapeutic efficacy of the classical PDT strategy is restricted due to skin photosensitivity, poor cancerous tissue specificity, and limited penetration of light. The application of nanoparticles in PDT can mitigate some of these shortcomings and enhance the targeting ability of PS in order to effectively use PDT against CRC as well as to reduce systemic side effects. Although 2D culture models are widely used in cancer research, they have some limitations. Therefore, 3D models in CRC PDT, particularly multicellular tumour spheroids (MCTS), have attracted researchers. This review summarizes several photosensitizers that are currently used in CRC PDT and gives an overview of recent advances in nanoparticle application for enhanced CRC PDT. In addition, the progress of 3D-model applications in CRC PDT is discussed. 相似文献
16.
Zaira Gadzhimagomedova Vladimir Polyakov Ilia Pankin Vera Butova Daria Kirsanova Mikhail Soldatov Darya Khodakova Anna Goncharova Elizaveta Mukhanova Anna Belanova Aleksey Maksimov Alexander Soldatov 《International journal of molecular sciences》2021,22(23)
X-ray photodynamic therapy (XPDT) has been recently considered as an efficient alternative to conventional radiotherapy of malignant tissues. Nanocomposites for XPDT typically consist of two components—a nanophosphor which re-emits X-rays into visible light that in turn is absorbed by the second component, a photosensitizer, for further generation of reactive oxygen species. In this study, BaGdF5 nanophosphors doped with different Eu:Gd ratios in the range from 0.01 to 0.50 were synthesized by the microwave route. According to transmission electron microscopy (TEM), the average size of nanophosphors was ~12 nm. Furthermore, different coatings with amorphous SiO2 and citrates were systematically studied. Micro-CT imaging demonstrated superior X-ray attenuation and sufficient contrast in the liver and the spleen after intravenous injection of citric acid-coated nanoparticles. In case of the SiO2 surface, post-treatment core–shell morphology was verified via TEM and the possibility of tunable shell size was reported. Nitrogen adsorption/desorption analysis revealed mesoporous SiO2 formation characterized by the slit-shaped type of pores that should be accessible for methylene blue photosensitizer molecules. It was shown that SiO2 coating subsequently facilitates methylene blue conjugation and results in the formation of the BaGdF5: 10% Eu3+@SiO2@MB nanocomposite as a promising candidate for application in XPDT. 相似文献
17.
Yi-An Chen Jia-Je Li Syue-Liang Lin Cheng-Hsiu Lu Sain-Jhih Chiu Fong-Shya Jeng Chi-Wei Chang Bang-Hung Yang Ming-Cheng Chang Chien-Chih Ke Ren-Shyan Liu 《International journal of molecular sciences》2021,22(9)
Ovarian cancer (OC) metastases frequently occur through peritoneal dissemination, and they contribute to difficulties in treatment. While photodynamic therapy (PDT) has the potential to treat OC, its use is often limited by tissue penetration depth and tumor selectivity. Herein, we combined Cerenkov radiation (CR) emitted by 18F-FDG accumulated in tumors as an internal light source and several photosensitizer (PS) candidates with matched absorption bands, including Verteporfin (VP), Chlorin e6 (Ce6) and 5′-Aminolevulinic acid (5′-ALA), to evaluate the anti-tumor efficacy. The in vitro effect of CR-induced PDT (CR-PDT) was evaluated using a cell viability assay, and the efficiency of PS was assessed by measuring the singlet oxygen production. An intraperitoneal ES2 OC mouse model was used for in vivo evaluation of CR-PDT. Positron emission tomography (PET) imaging and bioluminescence-based imaging were performed to monitor the biologic uptake of 18F-FDG and the therapeutic effect. The in vitro studies demonstrated Ce6 and VP to be more effective PSs for CR-PDT. Moreover, VP was more efficient in the generation of singlet oxygen and continued for a long time when exposed to fluoro-18 (18F). Combining CR emitted by 18F-FDG and VP treatment not only significantly suppressed tumor growth, but also prolonged median survival times compared to either monotherapy. 相似文献
18.
Huawei Xia Yinjia Gao Dr. Ling Yin Dr. Xiaju Cheng Anna Wang Meng Zhao Jianan Ding Prof. Haibin Shi 《Chembiochem : a European journal of chemical biology》2019,20(5):667-671
Manipulating the cross-coupling of gold nanoparticles (AuNPs) to maximize the photothermal effect is a promising strategy for cancer therapy. Here, by taking advantage of the well-known tetrazole/alkene photoclick chemistry, we have demonstrated for the first time that small AuNPs (23 nm) decorated with both 2,5-diphenyltetrazole and methacrylic acid on their surfaces can form covalently crosslinked aggregates upon laser irradiation (λ=405 nm). In vitro studies indicated that the light-triggered assembling shifted the surface plasmon resonance of AuNPs significantly to near-infrared (NIR) regions, which as a consequence effectively enhanced the efficacy of photothermal therapy for 4T1 breast cancer cells. We thus believe that this new light-triggered cross-coupling approach might offer a valuable tool for cancer treatment. 相似文献
19.
M. D'Hallewin M. Helle J. Garrier L. Bezdetnaya F. Guillemin 《Israel journal of chemistry》2012,52(8-9):706-714
A prerequisite for starting a clinical trial is evidence of a positive impact of the technique or drug in animals. The choice of the animal model is thus very important and should mimic as closely as possible the human situation. A variety of animal models have been validated for pharmaceutical trials. The situation in phototheranostics however is not fully clear. This is due to the very complex interplay of various elements such as vascularization, oxygenation, drug availability and biodistribution, light absorption, and scattering. The present paper will give general information on aspects of animal models that have to be considered in phototheranostics, as well as highlight some typical animal models that are useful for the investigation of light-tissue interactions. 相似文献
20.
Laura Marise de Freitas Giovana Maria Fioramonti Calixto Marlus Chorilli Ju?aíra Stella M. Giusti Vanderlei Salvador Bagnato Nikolaos S. Soukos Mansoor M. Amiji Carla Raquel Fontana 《International journal of molecular sciences》2016,17(5)
Antimicrobial photodynamic therapy (aPDT) is increasingly being explored for treatment of periodontitis. Here, we investigated the effect of aPDT on human dental plaque bacteria in suspensions and biofilms in vitro using methylene blue (MB)-loaded poly(lactic-co-glycolic) (PLGA) nanoparticles (MB-NP) and red light at 660 nm. The effect of MB-NP-based aPDT was also evaluated in a clinical pilot study with 10 adult human subjects with chronic periodontitis. Dental plaque samples from human subjects were exposed to aPDT—in planktonic and biofilm phases—with MB or MB-NP (25 µg/mL) at 20 J/cm2
in vitro. Patients were treated either with ultrasonic scaling and scaling and root planing (US + SRP) or ultrasonic scaling + SRP + aPDT with MB-NP (25 µg/mL and 20 J/cm2) in a split-mouth design. In biofilms, MB-NP eliminated approximately 25% more bacteria than free MB. The clinical study demonstrated the safety of aPDT. Both groups showed similar improvements of clinical parameters one month following treatments. However, at three months ultrasonic SRP + aPDT showed a greater effect (28.82%) on gingival bleeding index (GBI) compared to ultrasonic SRP. The utilization of PLGA nanoparticles encapsulated with MB may be a promising adjunct in antimicrobial periodontal treatment. 相似文献