首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
夹芯复合材料结构阻尼特性研究   总被引:4,自引:2,他引:2  
从粘弹性材料的本构关系出发,应用复特征值理论推导了夹芯复合材料结构阻尼的计算方法;同时基于能量损耗原理和阻尼的产生机理,研究了夹芯复合材料结构阻尼计算的模态应变能方法;提出了两种承载/减振夹芯复合材料结构模型,应用动态力学热分析方法测量了芯材的阻尼参数;应用两种阻尼计算理论和有限元数值分析相结合的方法研究了两种夹芯结构模型的损耗因子,并与试验结果进行了比较;分析了夹芯厚度对结构损耗因子的影响.  相似文献   

2.
分别开展缝合气凝胶夹芯复合材料在不同温度下的面内压缩试验,研究材料在室温、300℃、600℃和800℃下的面内压缩力学性能,并采用微焦点工业CT扫描的方法对试样内部结构进行分析,结合有限元分析方法,探究其结构破坏机制。结果表明:在面内压缩载荷作用下,材料存在极限载荷,面板的局部屈曲、芯层的剪切破坏以及缝线柱的断裂是材料破坏的主要方式。随着温度的升高,材料的面内压缩模量和极限载荷也逐渐升高,面板破坏处的断口逐渐呈现出类似脆性的断裂。300℃、600℃和800℃下材料的面内压缩模量分别为室温的1.05倍、1.57倍和1.65倍;极限载荷分别为室温的1.14倍、1.46倍和1.67倍。室温下有限元分析结果和试验结果的对比,验证了缝合气凝胶夹芯复合材料面内压缩破坏模式的合理性。  相似文献   

3.
在热防护材料及结构高温力学性能研究中,测量其在热载荷与机械载荷作用下产生的变形是重要且基础的工作。基于数字图像相关方法,建立了可实现800℃变形测量的非接触式测量系统。针对陶瓷纤维增强SiO_2气凝胶复合材料,从面外和面内两个材料方向,以25℃为参考温度,试验测量了材料加热至300~800℃范围内不同温度时产生的热变形。研究结果表明,在此试验系统基础上的变形测量方法可用来测量此类热防护材料的高温变形。陶瓷纤维增强SiO2气凝胶复合材料的高温热变形具有明显的各向异性,面外方向上表现为"收缩",面内方向上表现为"膨胀"。SiO_2气凝胶基体中的颗粒团聚以及增强纤维在面内方向上的铺层分布是导致热变形各向异性的主要原因。  相似文献   

4.
考虑一体化成型工艺制备的复合材料点阵夹芯结构及其不确定性,采用区间向量实现不确定参数定量化,建立复合材料点阵夹芯结构平压性能区间分析模型.考虑结构功能状态判断的模糊性,分别在不考虑设计容差与考虑设计容差情形下,建立了不确定平压载荷作用下含区间参数模糊可靠性分析与优化模型.研究结果表明:材料参数及结构参数不确定性,特别是设计容差对复合材料点阵夹芯结构平压性能影响明显,因此在工程优化中不仅需要充分考虑材料参数与外部载荷等不确定性,而且需要充分重视传统不确定设计方法中未计及的设计容差的影响.本研究实现了理论成果与工程应用的有机结合,为工程领域复合材料点阵夹芯结构平压性能分析与优化提供有效理论方法.  相似文献   

5.
复合材料夹芯结构非线性热传导分析   总被引:1,自引:0,他引:1  
针对复合材料夹芯结构温度场分布的特点, 提出一种用于复合材料夹芯结构热传导精细分析的有限单元模型。这种单元模型为三维六面体模型, 单元模型厚度方向的插值函数在芯层和面板交界节点处温度值是连续的, 但温度变化率是不连续的, 而芯层内部节点处沿厚度方向温度值和温度变化率都是连续的。在考虑材料热传导参数随温度变化的情况下, 基于这种有限单元模型建立的复合材料夹芯结构瞬态温度场分析有限元方程为非线性方程。在求解此瞬态热传导非线性有限元方程时, 改进了常用的动力学平衡方程的解法, 改进后的动力学平衡方程解法避免了迭代运算, 提高了求解非线性动态平衡方程的效率。数值算例结果显示了该分析模型的有效性和可靠性。   相似文献   

6.
面芯脱粘是复合材料夹芯结构常见的损伤形式。本工作综合考虑面芯界面损伤演化、分层屈曲以及分层扩展的耦合作用,建立了深水静压载荷下复合材料夹芯圆柱壳极限承载能力预报方法。基于非线性极限载荷计算方法,通过预制初始缺陷,开展了含面芯脱粘缺陷复合材料夹芯圆柱壳屈曲特性分析,揭示了典型面芯脱粘缺陷对复合材料夹芯圆柱壳失效模式及极限承载的影响机理,得到不同面芯脱粘形式、脱粘尺寸、脱粘位置的影响规律。研究发现,随贯穿面芯脱粘长度增加,结构失效模式发生整体屈曲→混合屈曲→局部屈曲演化;外蒙皮/芯层面芯脱粘对含环向贯穿面芯脱粘复合材料夹芯圆柱壳极限承载敏感度更高,内蒙皮/芯层界面脱粘对含纵向贯穿面芯脱粘缺陷复合材料夹芯圆柱壳极限承载敏感度更高;对于多个局部圆形面芯脱粘,沿纵向分布越集中、沿环向分布越离散,结构极限承载损失率越高。研究成果对面芯脱粘缺陷复合材料夹芯圆柱壳的优化设计与可靠性评估具有很好的指导意义。  相似文献   

7.
以三维连体织物格栅夹芯材料为研究对象, 研究其在平压、 剪切载荷作用下的力学特性与破坏模式, 并考察格栅分布密度、 厚度和泡沫填充等对力学性能的影响, 揭示纤维芯柱间的协同作用。结果表明: 三维连体织物格栅复合材料及其夹芯材料平压及剪切性能随芯柱纬向间距的增大而减小; 三维连体织物格栅夹芯材料芯柱之间的协同作用随着芯柱纬向间距的增大而逐渐增大; 大厚度三维连体织物格栅复合材料平压破坏模式主要为芯柱失稳, 最终芯柱断裂破坏, 剪切破坏模式为芯柱受剪根部断裂。  相似文献   

8.
以泡沫铝为夹芯材料,玄武岩纤维(BF)和超高分子量聚乙烯纤维(UHMWPE)复合材料为面板,制备夹层结构复合材料。研究纤维类型、铺层结构和芯材厚度对泡沫铝夹层结构复合材料冲击性能和损伤模式的影响规律,并与铝蜂窝夹层结构复合材料性能进行对比分析。结果表明:BF/泡沫铝夹层结构比UHMWPE/泡沫铝夹层结构具有更大的冲击破坏载荷,但冲击位移和吸收能量较小。BF和UHMWPE两种纤维的分层混杂设计比叠加混杂具有更高的冲击破坏载荷和吸收能量。随着泡沫铝厚度的增加,夹层结构复合材料的冲击破坏载荷降低,破坏吸收能量增大。泡沫铝夹层结构比铝蜂窝夹层结构具有更高的冲击破坏载荷,但冲击破坏吸收能量较小;泡沫铝芯材以冲击部位的碎裂为主要失效形式,铝蜂窝芯材整体压缩破坏明显。  相似文献   

9.
碳纤维增强金字塔点阵夹芯结构的抗压缩性能   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种碳纤维增强复合材料点阵夹芯结构的一体化成型工艺方法。该方法克服了传统夹芯结构面板与芯子之间因需要二次粘接或焊接的方法所带来弱界面的缺点。将纤维杆两端埋入面板内,使面板与芯子成为一体而不存在明显的界面。对用该方法制备的碳纤维增强金字塔点阵夹芯板进行平压试验,研究发现随着载荷的增加,纤维杆发生弹性屈曲并在中间部位出现断裂。理论分析了点阵夹芯结构平压载荷下的弹性模量和纤维杆极限屈曲载荷。通过与传统夹芯材料相比较发现,这种新型复合材料点阵夹芯结构具有密度低、比强度和比刚度高等优点。   相似文献   

10.
提出一种三层32 结点温度壳单元, 对蜂窝夹芯复合材料壳体的瞬态温度场进行了有限元分析。分别假定上下面板与芯层沿厚度方向的温度分布规律, 事先近似满足上下表面的热边界条件及层间的温度连续条件, 以消减总的自由度数。壳体内外表面可以同时考虑热流、对流及辐射换热边界条件, 并通过温度的后处理使芯层温度场也满足层间的热流连续条件, 从而进一步提高温度场计算的准确性。两个实例分析验证了所提出单元的可靠性与有效性。  相似文献   

11.
碳/玻纤间隔织物是一种新型结构的纤维增强材料,其纤维与树脂的结合牢度是决定其复合材料性能的主要因素。为了进一步改善碳纤维和玻璃纤维与树脂的界面结合性能,本文采用不同功率的常压低温等离子技术对整体中空织物进行处理,然后通过扫描电镜、吸光率表征、玻纤单丝微脱粘测试以及碳纤维复丝拉伸性能测试等对织物中的碳纤维与玻璃纤维进行表征。研究结果表明,经过等离子处理后,混杂织物中的面层和芯材均受到等离子体刻蚀,纤维表面的官能团增多,纤维浸润性界面结合性能得到改善。同时,研究结果还表明,等离子处理碳/玻间隔织物的改性效果随着功率的增加是先增加后降低,在功率为150w的常压低温等离子处理的效果最佳。  相似文献   

12.
采用不同混杂比的碳纤维-玻璃纤维层内经向混编单轴向织物制备了混杂纤维增强环氧树脂复合材料, 研究了不同混杂结构和不同混杂比的碳纤维-玻璃纤维/环氧树脂复合材料拉伸性能的变化及破坏形式。0°拉伸结果表明:同种混杂织物的不同混杂结构中, 碳纤维相对集中的完全对齐结构强度最高, 不同混杂比织物的完全对齐结构强度相当;碳纤维-玻璃纤维/环氧树脂复合材料的模量遵循混合定律。90°拉伸结果表明:纤维与树脂间的界面结合强度为碳纤维/树脂>玻璃纤维/树脂, 碳纤维-玻璃纤维/环氧树脂复合材料的强度、模量与材料厚度方向上界面的不同形式(单一或交替界面、碳纤维或玻璃纤维的分布位置等)有关, 与碳纤维的含量基本无关。   相似文献   

13.
The removal of top resin layer is an essential task prior to adhesive bonding of carbon fiber reinforced polymer (CFRP) composites. This paper investigates the technical feasibility of using a low power continuous wave carbon dioxide laser for removing the top resin layer of CFRP without damaging the underlying fiber. The operating window and damaging threshold were experimentally determined. Irradiating the CFRP surface at a power of 14 W, scanning speed of 880 mm/sec, and a beam overlap of 25% provides an optimal thermal condition for removal of top resin layer. A finite element model was used to explain the removal mechanisms.  相似文献   

14.
为改善碳纤维表面性能以及碳纤维/树脂复合材料的界面性能,对PAN基高模量碳纤维(HMCF)表面进行聚合物涂层处理。研究了不同潜伏性固化剂含量的聚合物涂层对HMCF表面以及碳纤维/树脂复合材料的界面性能的影响。IR分析表明,聚合物涂层与纤维或树脂基体发生了化学反应。扫描电镜和动态机械热分析的结果也说明,聚合物涂层能够提高...  相似文献   

15.
碳纤维增强树脂复合材料以其优异的性能,在各领域得到广泛应用。由于树脂基体具有黏弹性,使其合成的复合材料也表现出黏弹性行为。蠕变是材料黏弹性行为中最典型的一类现象,因此对碳纤维增强树脂复合材料细观蠕变性能的研究具有重要意义。室温下利用纳米压痕技术对碳纤维增强树脂复合材料中的基体、界面及纤维相在不同峰值载荷下的细观蠕变行为进行分析。结果表明:在相同的蠕变时间下,最大载荷为2 mN和10 mN的纤维蠕变位移约为基体蠕变位移的1/3和1/2,界面的蠕变位移介于两者之间;稳态蠕变阶段的蠕变速率小于0.1%;基体、界面、纤维的蠕变应力指数分别为3.6、2.9和2.1。同时根据Kelvin-Voigt模型得到了基体、界面及纤维的第一、第二复数模量、黏度系数及蠕变柔量。   相似文献   

16.
Carbon fiber reinforced composites have attracted lots of attention in many fields. However, on account of the poor infiltration of resin to carbon fiber, the weak interface performance between fiber and resin has been restricting the interface properties of composites. In recent progress, the review attaches more importance to the introduction of the third phase monomer, which mainly uses physical and chemical methods to assemble nanomaterials (such as carbon nanotubes, graphene, etc.) on the carbon fiber surface to modify the interface structure of the carbon fiber reinforced composites, and all of them have been demonstrated in this paper. Furthermore, the effects of introducing nanomaterials on the structure of the fiber/resin interface and the relationship between multi-scale interface structure and properties have been investigated. It can be seen that the design idea of researchers mainly uses one or more theories to improve the interface properties of carbon fiber reinforced composites, such as transition layer, chemical bonding, mechanical interlocking, infiltration, diffusion, and adsorption. In brief, this work provides some novel insights for the preparation of carbon fiber reinforced composites with excellent interlaminar shear strength.  相似文献   

17.
程飞  蒋宏勇 《复合材料学报》2021,38(11):3610-3619
针对树脂基复合材料树脂粘接层脆性大且存在结构缺陷,易发生剥离和分层等突出问题,提出以轻质高强的芳纶pulp(AP)作为增强剂,通过模压成型制得强化的碳纤维增强树脂基复合材料(CFRP),研究不同添加面密度对复合材料抗钻孔、钻孔-冲击二次损抗性能和损伤后的抗压强度的影响。结果表明,6 g/m2 AP使复合材料直接、钻孔以及钻孔-冲击后抗压强度分别增强37.3%、41.0%和41.8%。分析认为:AP改善了树脂脆性,消除层间富树脂区域,提升层间断裂韧性,抑制了裂纹生长;同时AP以纤维桥连形式贯穿于树脂层和碳纤维层,不仅改善了树脂与碳纤维粘接界面的缺陷,也构建准Z方向的纤维排布,避免裂纹向单层界面扩展而导致结构分层,从而实现结构强化。   相似文献   

18.
制备了一种新型的防热隔热一体化材料碳高硅氧纤维增强C-SiC复合材料,沿厚度方向从抗烧蚀层渐次过渡到隔热层,其组成依次是致密C/C—SiC,致密C/C,多孔C/C,通过界面处过渡到变密度多孔HSF/C.这种材料既具有抗烧蚀性能又具有隔热性能.C/CSiC复合材料的烧蚀表面平滑,线烧蚀率只有0.028mm/s.烧蚀性能的提高得益于SiC颗粒原位氧化生成SiO2黏附在碳材料表面,对氧气有一定的阻挡遮蔽作用。密度为0.80g/cm^3的HSF/C材料,热导率为0.59W/mK.在碳纤维与高硅氧织物的界面处,针刺纤维与热解碳的结合良好,密度为1.69g/cm^3的C—HSF/C复合材料界面处的剪切强度达到16.7MPa.  相似文献   

19.
A fatigue crack propagation equation of reinforced concrete (RC) beams strengthened with a new type carbon fiber reinforced polymer was proposed in this paper on the basis of experimental and numerical methods. Fatigue crack propagation tests were performed to obtain the crack propagation rate of the strengthened RC beams. Digital image correlation method was used to capture the fatigue crack pattern. Finite element model of RC beam strengthened with carbon fiber reinforced polymer was established to determinate J‐integral of a main crack considering material nonlinearities and degradation of material properties under cyclic loading. Paris law with a parameter of J‐integral was developed on the basis of the fatigue tests and finite element analysis. This law was preliminarily verified, which can be applied for prediction of fatigue lives of the strengthened RC beams.  相似文献   

20.
通过对玻纤增强环氧乙烯基酯树脂(GF/EVE)和玻璃纤维增强不饱和聚酯树脂(GF/UP)复合材料的多轴向铺层设计试件进行低速冲击、弯曲和剪切破坏性力学试验,分析了不同铺层方式的GF/EVE和GF/UP复合材料冲击、弯曲和剪切载荷作用下产生的损伤及失效模式。结果表明:在铺层设计与工艺相同的情况下,CF/EVE的弯曲强度、冲击韧性均优于CF/UP;[0,90]6试件冲击能量吸收性能优于其他五种铺层方式;铺设角设计、树脂基体类型、铺层厚度对层合板剪切力学性能的影响较小。并基于SEM与超声C扫描成像检测(C-SAM)对复合材料的微观界面脱粘机制及损伤演化行为进行阐释。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号