共查询到20条相似文献,搜索用时 15 毫秒
1.
Flower-like CdS nanostructures consisting of sword-like nanorods have been prepared via organic-free hydrothermal method using thioacetamide (TAA) as sulfur source. X-ray diffraction pattern (XRD) shows that the obtained flower-like CdS nanostructures are of hexagonal phase. The selected area electron diffraction (SAED) pattern identifies that the flower-like CdS nanostructures are single crystalline in nature. Furthermore, the optical properties of flower-like CdS nanostructures have been characterized by ultraviolet-vis (UV-vis) and photoluminescence (PL) spectra. Finally, the investigation on the mechanism indicates that the internal structure and sulfur mass transport controlled by TAA play the critical role in the formation of flower-like CdS nanostructures. 相似文献
2.
Mei Xue 《Materials Letters》2010,64(12):1357-6387
In the current paper, novel multi-trunk CdS dendrites were synthesized via a simple hydrothermal system, employing CdCl2·2H2O and KSCN as the starting materials. No extra surfactants were used. The observations from TEM and SEM showed that the product composed of a few long central trunks with secondary branches, which preferentially grew in a parallel direction with a definite angle to the trunks. Selected area electron diffraction (SAED) patterns confirmed that the dendrite was single crystalline in nature. X-ray diffraction analyses proved that the CdS dendrites were pure hexagonal structure. On the basis of the experimental results, a possible growth process has been discussed. 相似文献
3.
《Journal of Experimental Nanoscience》2013,8(3):171-176
Brush-like CdS arrays composed of well-arranged nanorods have been successfully synthesized for the first time through a novel chemical reaction under the low-temperature hydrothermal condition. The reaction can be described as the solvent-oxidation-hydrolysis reaction among Cd, H2O and thiourea. The products were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and photoluminescence (PL). TEM results showed that these nanorods were about 20?nm wide with lengths varying from 1.25?µm to 3.5?µm. XRD pattern indicated that as-obtained CdS was hexagonal phase with good crystallinity. PL spectrum showed the products had novel optical property from the bulk counterpart. The formation mechanism was also explored. 相似文献
4.
Hydrothermal synthesis and optical properties of CuS nanoplates 总被引:1,自引:0,他引:1
Jie Zhang 《Materials Letters》2008,62(15):2279-2281
CuS nanoplates have been successfully prepared in the presence of cation surfactant cetyltrimethylammonium bromide (CTAB) by hydrothermally treating the solution of CuCl2·2H2O and Na2S·9H2O at 180 °C for 24 h. The as-prepared CuS nanoplates are of hexagonal phase and are single crystal. The thickness and edge length of the nanoplates are about 15 nm and 60 nm, respectively. The products was characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, photoluminescence measurements and ultraviolet-visible light spectrophotometer. The influences of synthetic parameters, such as reaction time and CTAB, on the morphologies of the products have been investigated. 相似文献
5.
利用氯化镉(CdC12)、硫脲(CO(NH2)2)和聚乙烯吡咯烷酮(PVP),在水热条件下获得了玉米棒状和花状等不同形貌的CdS纳米结构.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、荧光发光光谱(PL)、紫外可见光分光光度计(UV-vis)对产物进行表征.结果表明:PVP对不同形貌CdS纳米结构的形成起关键作用,随着PVP量的增加,PVP选择性地吸附(102)晶面,抑制了该(102)晶面方向的生长,使产物的形貌由玉米棒状转变为花状;而花状纳米结构的紫外的吸收产生了红移现象,荧光性能无明显变化. 相似文献
6.
A hydrothermal approach to flake-shaped CdS single crystals 总被引:1,自引:0,他引:1
The morphological transformation process from CdS nanorods to hexagonal CdS flakes was investigated in detail by transmission electron microscope (TEM). The CdS flakes were liable to form with the alkalinity being increased and the reaction time being prolonged. Using this transformation, hexagonal CdS flakes with diameters of 0.3 cm were grown via a recrystallization process in 6 mol/L sodium hydroxide solution at 250 °C. And the formation mechanism of CdS flakes is suggested based on the growth habits of polar crystals under proper basic hydrothermal conditions. 相似文献
7.
8.
多臂 CdS纳米晶体的水热控制合成 总被引:1,自引:0,他引:1
以络合剂为辅助剂,用水热方法合成了多臂CdS纳米晶体,用TEM、ED、SEM、RAMAN、PL等技术对产物进行了表征.研究了不同络合剂对水热合成多臂CdS纳米晶体的影响,以乙二胺、甲胺、乙胺为辅助剂水热合成所得三臂CdS的产率分别为2%、35%、85%,而以氨为辅助剂时,仅能得到颗粒状CdS纳米晶体.此外,对水热合成多臂CdS纳米晶体的形成机制作了初步探讨. 相似文献
9.
以醋酸镉和硫为原料,采用二硫化四乙基秋兰姆TETD和2,2-二硫代二苯并噻唑为成核剂,利用无水无氧系统在ODE的溶液中制备了尺寸可控、单分散、均一的半导体CdS纳米材料.采用XRD、粒度分析、SEM技术分别表征产物的结构、粒度和形貌.通过改变两种成核剂的使用量及反应时间可以得到不同粒径的CdS纳米晶.研究表明,在一定范围内,成核剂使用量增加或者反应时间延长都会导致产物的粒度变大,因此通过调节成核荆的使用量和反应时间从而实现对CdS纳米晶的可控生长. 相似文献
10.
11.
用水热、溶剂热方法制备纳米CdS粒子及其光催化性能 总被引:14,自引:0,他引:14
以硫化钠和硫代乙酰胺为硫源,用水热和溶剂热方法制备了不同粒径的纳米硫化镉半导体光催化剂.借助X射线衍射(XRD),UV-Vis漫反射对CdS催化剂进行了表征.以甲酸水溶液的光催化制氢反应为探针,评价了不同合成方法对催化剂活性的影响;用电化学方法测定了CdS光腐蚀程度.结果表明,反应物、溶剂与温度等都可影响CdS晶型与结晶度,导致其光催化活性差异;CdS光腐蚀性与其晶型有关,并随结晶度的提高显著降低,这说明通过控制合适的条件可制备高活性低腐蚀的CdS. 相似文献
12.
13.
14.
气-液反应反胶束法制备CdS纳米颗粒 总被引:2,自引:0,他引:2
用H2S气体分别与反胶束中的CdCl2水溶液和由EDTA络合的CdCl2水溶液反应,制备了单分散程度较高的CdS纳米颗粒,在产物中还发现有少量三角形颗粒,并对其形成机理进行了初步探讨。 相似文献
15.
在非配位溶剂中合成了高质量的CdS纳米晶核,并利用Cu2+离子对其进行掺杂,制备了CdS:Cu纳米晶.通过进一步采用连续离子层吸附反应的方法对CdS:Cu纳米晶进行表面修饰,得到CdS:Cu/CdS复合结构纳米晶.利用X射线衍射(XRD),透射电镜(TEM),紫外可见吸收光谱(UV-Vis)和荧光光谱(PL)对其结构、形貌以及光学性质进行了表征和分析,结果表明:所制备的复合结构CdS:Cu/CdS纳米晶为立方闪锌矿结构;与CdS纳米晶核相比,掺杂Cu2+可以使其表面态发光发生红移;在CdS:Cu纳米晶中,通过改变掺杂Cu2+的浓度,可以实现表面态发光在570和620nm之间的连续调节.与未经包覆的CdS:Cu纳米晶相比,包覆层CdS增强了纳米晶CdS:Cu的稳定性. 相似文献
16.
功能化CdS纳米晶的合成及CdS/聚苯乙烯纳米杂化材料的研究 总被引:3,自引:0,他引:3
以氯化镉和硫化钠为原料,采用巯基乙醇为有机配体,在H2O/DMF的溶剂中,制得分散均匀且表面富含羟基基团CdS纳米晶溶液.我们使用γ-甲基丙烯氧丙基三甲氧基硅烷(MPS)来修饰CdS纳米晶的表面,得到双键官能团化的CdS纳米晶.通过原位自由基聚合方法,成功地得到了聚苯乙烯基CdS纳米晶复合材料.利用傅里叶红外光谱仪(FT-IR)、透射电子显微镜(TEM)、紫外-可见光吸收光谱仪(UV-vis)、X射线衍射分析仪(XRD)、热重分析仪(TGA)、荧光光谱 (PL) 考察了CdS纳米晶及CdS/聚苯乙烯复合材料的结构和光学性能的关系规律.结果表明巯基乙醇表现出良好的光学性能,其配体不是简单的物理吸附于纳米晶表面,而是以化学键的形式和纳米晶表面镉原子相结合.相比于纯的聚苯乙烯材料,聚苯乙烯基CdS纳米晶材料表现出良好的光学和热学性能. 相似文献
17.
18.
甲醇介质中溶剂热合成六方CdS中空纳米球 总被引:4,自引:0,他引:4
以甲醇为溶剂, 硝酸镉和硫脲为原料, 通过溶剂热法合成了CdS中空纳米球, 采用TEM、EDS和XRD对样品形貌和结构进行了表征. TEM与EDS分析显示产物主要为洋葱状CdS中空纳米球, 外径为5~17nm, 空腔直径为3~14nm. XRD分析结果表明,CdS中空纳米球为六方纤锌矿结构. 并初步考察了醇类溶剂对形成CdS纳米结构的影响. 结果表明,当以无水乙醇或正戊醇为溶剂时,产物分别为CdS颗粒团簇或CdS纳米颗粒组装的微球,说明甲醇对中空结构的形成起了重要作用. 以甲醇作溶剂时, 中空纳米球的形成可能是CdS纳米片层高压下卷曲形成的. 相似文献
19.