首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ge2Sb2Te5 alloy has drawn much attention due to its application in phase-change random-access memory and potential as a thermoelectric material. Electrical and thermal conductivity are important material properties in both applications. The aim of this work is to investigate the temperature dependence of the electrical and thermal conductivity of Ge2Sb2Te5 alloy and discuss the thermal conduction mechanism. The electrical resistivity and thermal conductivity of Ge2Sb2Te5 alloy were measured from room temperature to 823 K by four-terminal and hot-strip method, respectively. With increasing temperature, the electrical resistivity increased while the thermal conductivity first decreased up to about 600 K then increased. The electronic component of the thermal conductivity was calculated from the Wiedemann–Franz law using the resistivity results. At room temperature, Ge2Sb2Te5 alloy has large electronic thermal conductivity and low lattice thermal conductivity. Bipolar diffusion contributes more to the thermal conductivity with increasing temperature. The special crystallographic structure of Ge2Sb2Te5 alloy accounts for the thermal conduction mechanism.  相似文献   

2.
Nitrogen-doped Ge2Sb2Te5 (GST) films for nonvolatile memories were prepared by reactive sputtering with a GST alloy target. Doped nitrogen content was determined by using x-ray photoelectron spectroscopy (XPS). The crystallization behavior of the films was investigated by analyzing x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results show that nitrogen doping increases crystallization temperature, crystallization-activation energy, and phase transformation temperature from fcc to hexagonal (hex) structure. Doped nitrogen probably exists in the grain vacancies or grain boundaries and suppresses grain growth. The electrical properties of the films were studied by analyzing the optical band gap and the dependence of the resistivity on the annealing temperature. The optical band gap of the nitrogen-doped GST film is slightly larger than that of the pure GST film. Energy band theory is used to analyze the effect of doped nitrogen on electrical properties of GST films. Studies reveal that nitrogen doping increases resistivity and produces three relatively stable resistivity states in the plot of resistivity versus annealing temperature, which makes GST-based multilevel storage possible. Current-voltage (I-V) characteristics of the devices show that nitrogen doping increases the memory’s dynamic resistance, which reduces writing current from milliampere to microampere.  相似文献   

3.
Experimental results on the switching effects related to the phase transitions in Ge2Sb2Te5 in the presence of external voltage or laser irradiation are presented. An electron model of the reversible switching is discussed.  相似文献   

4.
A phase-change memory device that utilizes an antimony (Sb)-excess Ge15Sb47Te38 chalcogenide thin film was fabricated and its electrical properties were measured and compared with a similar device that uses Ge22Sb22Te56. The resulting electrical characteristics exhibited I reset values of 14 mA for Ge22Sb22Te56 and 10.6 mA for Ge15Sb47Te38. Also, the set operation time (t set) for the device using Ge15Sb47Te38 films was 140 ns, which was more than twice as fast as the Ge22Sb22Te56 device. The relationship between the microstructure and the improved electrical performance of the device was examined by means of transmission electron microscopy (TEM).  相似文献   

5.
Data on the Raman spectra of thin Ge2Sb2Te5 chalcogenide semiconductor films are reported. The study is performed with the purpose of determining the temperatures of phase transitions initiated by laser radiation.  相似文献   

6.
Effect of high electric fields on the conductivity of 0.5-1-μm-thick layers of a chalcogenide glassy semiconductor with a composition Ge2Sb2Te5, used in phase memory cells, has been studied. It was found that two dependences are observed in high fields: dependence of the current I on the voltage U, of the type IU n , with the exponent (n ≈ 2) related to space-charge-limited currents, and a dependence of the conductivity σ on the field strength F of the type σ = σ0exp(F/F 0) (where F 0 = 6 × 104 V cm−1), caused by ionization of localized states. A mobility of 10−3–10−2 cm2 V−1 s−1 was determined from the space-charge-limited currents.  相似文献   

7.
On one Sb2Te3 single crystal, the temperature dependences of all three independent components of the Nernst-Ettingshausen tensor (Q ikl ) are measured in the temperature range of 85–450 K, all three components being negative. Alongside with the Nernst-Ettingshausen effect, the anisotropy of the Hall (R ikl ) and Seebeck (S ij ) coefficients and the conductivity (σ ii ) is also investigated. The carried-out analysis of the experimental data on the Nernst-Ettingshausen and Seebeck effects indicates that there is the mixed scattering mechanism with the participation of acoustic phonons and impurity ions, the relative contributions of these mechanisms varying with temperature. In the relaxation-time-tensor approximation, the values of the effective scattering parameter (r) are determined. The obtained values point to the dominant scattering at acoustic phonons in the cleavage plane and to the substantial contribution of charged ions to the scattering along the trigonal axis c 3. It is shown that it is possible to explain the major features of experimental data on the Nernst-Ettingshausen effect within the two-valence-band model with the participation of several groups of holes in the transport phenomena.  相似文献   

8.
A thermopile sensor was processed on a glass substrate by electrodeposition of n-type bismuth telluride (Bi-Te) and p-type antimony telluride (Sb-Te) films. The n-type Bi-Te film electrodeposited at −50 mV in a 50 mM electrolyte with a Bi/(Bi + Te) mole ratio of 0.5 exhibited a Seebeck coefficient of −51.6 μV/K and a power factor of 7.1 × 10−4 W/K2 · m. The p-type Sb-Te film electroplated at 20 mV in a 70 mM solution with an Sb/(Sb + Te) mole ratio of 0.9 exhibited a Seebeck coefficient of 52.1 μV/K and a power factor of 1.7 × 10−4 W/K2 · m. A thermopile sensor composed of 196 pairs of the p-type Sb-Te and the n-type Bi-Te thin-film legs exhibited sensitivity of 7.3 mV/K.  相似文献   

9.
The thermal stability of the thermoelectric Zn4Sb3 has been investigated by synchrotron power diffraction measurements in the temperature range of 300 K to 625 K in a capillary sealed under Ar. Data were also collected in air on a 1% Cd-doped sample. Rietveld refinements of the data indicate that a variety of impurity phases are formed. After heat treatment, more than 85% of the Zn4Sb3 phase remains in the 1% Cd-doped sample heated in air, and 97% remains in the undoped Zn4Sb3 heated in Ar. These stabilities are better than those previously observed in pure samples heated in air. This suggests that doping, as well as oxygen or oxidation impurities, play important roles in the thermal stability of this compound.  相似文献   

10.
Mo3Sb7, crystallizing in the Ir3Ge7 type structure, has poor thermoelectric (TE) properties due to its metallic behavior. However, by a partial Sb-Te exchange, it becomes semiconducting without noticeable structure changes and so achieves a significant enhancement in the thermopower with the composition of Mo3Sb5Te2. Meanwhile, large cubic voids in the Mo3Sb5Te2 crystal structure provide the possibility of filling the voids with small cations to decrease the thermal conductivity by the so-called rattling effect. As part of the effort to verify this idea, we report herein the growth as well as measurements of the thermal and electrical transport properties of Mo3Sb5.4Te1.6 and Ni0.06Mo3Sb5.4Te1.6.  相似文献   

11.
A fine measurement system for measuring thermal conductivity was constructed. An accuracy of 1% was determined for the reference quartz with a value of 1.411 W/m K. Bi0.5Sb1.5Te3 samples were prepared by mechanical alloying followed by hot-pressing. Grain sizes were varied in the range from 1 μm to 10 μm by controlling the sintering temperature in the temperature range from 623 K to 773 K. The thermal conductivity was 0.89 W/m K for the sample sintered at 623 K, while a grain size of 1.75 μm was measured by optical microscopy and scanning electron microscopy. The thermal conductivity increased on the sample sintered at 673 K because of grain growth and decreased on those sintered at the temperatures from 673 K to 773 K because the increase of pore size caused to decrease thermal conductivity. The increase of thermal conductivity for the samples sintered at temperatures above 773 K was affected by the increase of carrier concentration.  相似文献   

12.
In (Bi1.9Sb0.1)1 − x Sn x Te3 solid solution with different contents of Sn, the electrical conductivity (σ11) and the Hall (R 123 and R 321), Seebeck (S 11 and S 33), and Nernst-Ettingshausen (Q 123 and Q 321) coefficients have been measured. It is shown that doping with tin strongly modifies temperature dependences of the kinetic coefficients. The effect of tin on electrical homogeneity of the samples has been studied: with increasing number of Sn atoms embedded, crystals become more homogeneous. These features indicate the presence of the quasi-local states of Sn in the valence band of Bi1.9Sb0.1Te3. Within a one-band model, we estimated the effective mass of the density of hole states (m d ), the energy gap extrapolated to 0 K (E g0 = 0.20–0.25 eV), the energy of impurity states (E Sn ≈ 40–45 meV), and the scattering parameter (r ≈ 0.1–0.4). Numerical values of the scattering parameter indicate a mixed mechanism of scattering in the samples under investigation with dominant scattering at acoustic phonons. With increasing content of tin in the samples, the contribution of impurity scattering increases.  相似文献   

13.
The Shubnikov–de Haas effect and the Hall effect in n-Bi2–xTlxSe3 (x = 0, 0.01, 0.02, 0.04) and p-Sb2–xTlxTe3 (x = 0, 0.005, 0.015, 0.05) single crystals are studied. The carrier mobilities and their changes upon Tl doping are calculated by the Fourier spectra of oscillations. It is found shown that Tl doping decreases the electron concentration in n-Bi2–xTlxSe3 and increases the electron mobility. In p-Sb2–xTlxTe3, both the hole concentration and mobility decrease upon Tl doping. The change in the crystal defect concentration, which leads to these effects, is discussed.  相似文献   

14.
The magnetic susceptibility of Czochralski-grown single crystals of Bi2Te3-Sb2Te3 alloys containing 0, 10, 25, 40, 50, 60, 65, 70, 80, 90, 99.5, or 100 mol % Sb2Te3 has been investigated. The magnetic susceptibility of these crystals was determined at the temperature T = 291 K and the magnetic field H oriented parallel (χ) and perpendicularly (χ) to the trigonal crystallographic axis C 3. A complicated concentration dependence of the anisotropy of magnetic susceptibility χ has been revealed. The crystals with the free carrier concentration p ≈ 5 × 1019 cm?3 do not exhibit anisotropy of magnetic susceptibility. The transition to the isotropic magnetic state occurs for the compositions characterized by a significantly increased (from 200 to 300 meV) optical bandgap.  相似文献   

15.
AlGaAsSb and GaAsSb alloys of different composition were grown by molecular-beam epitaxy (MBE) on GaSb, InAs, and GaAs substrates, using both conventional and cracker antimony effusion cells. The incorporation coefficients of dimer and tetramer antimony molecules, which totally describe the kinetic processes on the growth surface, were calculated. The differences in the incorporation of Sb2 and Sb4 molecules in MBE-grown GaAsSb alloys are shown. The effect of the MBE-growth parameters (substrate temperature and incident fluxes of group-V and group-III elements) on the composition of (Al,Ga)AsSb alloys and the incorporation coefficient of Sb was studied in detail. The incorporation coefficients of tetramer and dimer antimony molecules were found to vary over a wide range, depending on the substrate temperature and the ratio between the arrival rates of the group-III and the group-V elements.  相似文献   

16.
The results of studying the thermoelectric properties of p-type Bi0.5Sb1.5Te3 alloy samples prepared by melt spinning quenching are presented. The material after melt spinning is shaped as thin ribbons and has a quasi-amorphous structure. The thermoelectric properties (thermoelectric power and electrical resistance) and crystallization processes of as-prepared melt-spun ribbons are studied at 300–800 K for the first time. The stability range of the initial state, the crystallization-onset temperature, and the effect of thermal annealing on the thermoelectric-power factor of the alloy are determined.  相似文献   

17.
Cu0.003Bi0.4Sb1.6Te3 alloys were prepared by using encapsulated melting and hot extrusion (HE). The hot-extruded specimens had the relative average density of 98%. The (00l) planes were preferentially oriented parallel to the extrusion direction, but the specimens showed low crystallographic anisotropy with low orientation factors. The specimens were hot-extruded at 698 K, and they showed excellent mechanical properties with a Vickers hardness of 76 Hv and a bending strength of 59 MPa. However, as the HE temperature increased, the mechanical properties degraded due to grain growth. The hot-extruded specimens showed positive Seebeck coefficients, indicating that the specimens have p-type conduction. These specimens exhibited negative temperature dependences of electrical conductivity, and thus behaved as degenerate semiconductors. The Seebeck coefficient reached the maximum value at 373 K and then decreased with increasing temperature due to intrinsic conduction. Cu-doped specimens exhibited high power factors due to relatively higher electrical conductivities and Seebeck coefficients than those of undoped specimens. A thermal conductivity of 1.00 Wm?1 K?1 was obtained at 373 K for Cu0.003Bi0.4Sb1.6Te3 hot-extruded at 723 K. A maximum dimensionless figure of merit, ZT max = 1.05, and an average dimensionless figure of merit, ZT ave = 0.98, were achieved at 373 K.  相似文献   

18.
Ca5Al2Sb6 is a relatively inexpensive Zintl compound exhibiting promising thermoelectric efficiency at temperatures suitable for waste heat recovery. Motivated by our previous studies of Ca5Al2Sb6 doped with Na and Zn, this study focuses on doping with Mn2+ at the Al3+ site. While Mn is a successful p-type dopant in Ca5Al2Sb6, we find that incomplete dopant activation yields lower hole concentrations than obtained with either previously investigated dopant. High-temperature Hall effect and Seebeck coefficient measurements show a transition from nondegenerate to degenerate semiconducting behavior in Ca5Al2−x Mn x Sb6 samples (x = 0.05, 0.1, 0.2, 0.3, 0.4) with increasing Mn content. Ultimately, no improvement in zT is achieved via Mn doping, due in part to the limited carrier concentration range achieved.  相似文献   

19.
Flash evaporation is used to grow Bi0.5Sb1.5Te3 films 1200 nm thick on mica substrates. The average lateral crystallite sizes in the as-grown films are ~800 nm. The (0001) plane in the crystallites is preferentially parallel to the substrate plane. After heat treatment in an argon atmosphere, the effective lateral size of crystallites in which the third-order axis is perpendicular to the substrate plane increased by a factor of 3–5. The crystallites were preferentially oriented in the substrate plane as well. The thermoelectric-power parameter of Bi0.5Sb1.5Te3 films after their heat treatment in an inert environment increased approximately twofold to values close to that of the corresponding single crystals.  相似文献   

20.
We report on the successful hydrothermal synthesis of Bi0.5Sb1.5Te3, using water as the solvent. The products of the hydrothermally prepared Bi0.5 Sb1.5Te3 were hexagonal platelets with edges of 200–1500 nm and thicknesses of 30–50 nm. Both the Seebeck coefficient and electrical conductivity of the hydrothermally prepared Bi0.5Sb1.5Te3 were larger than those of the solvothermally prepared counterpart. Hall measurements of Bi0.5Sb1.5Te3 at room temperature indicated that the charge carrier was p-type, with a carrier concentration of 9.47 × 1018 cm−3 and 1.42 × 1019 cm−3 for the hydrothermally prepared Bi0.5Sb1.5Te3 and solvothermally prepared sample, respectively. The thermoelectric power factor at 290 K was 10.4 μW/cm K2 and 2.9 μW/cm K2 for the hydrothermally prepared Bi0.5Sb1.5Te3 and solvothermally prepared sample, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号