首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The H∞ filtering problem for continuous-time polytopic uncertain time-delay systems is investigated. Attention is focused on the design of full-order filters guaranteeing a prescribed H∞ attenuation level for the filtering error system. First, a simple alternative proof is given for an improved linear matrix inequality (LMI) representation of H∞ performance. Then, based on the performance criterion which keeps Lyapunov matrices out of the product of system dynamic matrices, a suficient condition for the exi...  相似文献   

2.
The problem of mixed H2/H∞ filtering for polytopic Delta operator systems is investigated. The aim is to design a linear asymptotically stable filter which guarantees that the filtering error system has different performances in different filtering channels. Based on a parameter-dependent Lyapunov function, a new mixed H2/H∞ performance criterion is presented. Upon this performance criterion, a sufficient condition for the full-order mixed H2/H∞ filter is derived in terms of linear matrix inequalities. The filter can be obtained from the solution of a convex optimization problem. The proposed filter design procedure is less conservative than the strategy based on the quadratic stability notion. A numerical example is given to illustrate the feasibility of the proposed approach.  相似文献   

3.
The robust H∞ control problem for discrete-time uncertain systems is investigated in this paper. The uncertain systems are modelled as a polytopic type with linear fractional uncertainty in the vertices. A new linear matrix inequality (LMI) characterization of the H∞ performance for discrete systems is given by introducing a matrix slack variable which decouples the matrix of a Lyapunov function candidate and the parametric matrices of the system. This feature enables one to derive sufficient conditions for discrete uncertain systems by using parameter-dependent Lyapunov functions with less conservativeness. Based on the result, H∞ performance analysis and controller design are carried out. A numerical example is included to demonstrate the effectiveness of the proposed results.  相似文献   

4.
The problem of mixed H_2/H_∞ filtering for polytopic Delta operator systems is investigated. The aim is to design a linear asymptotically stable filter which guarantees that the filtering error system has different performances in different filtering channels. Based on a parameter-dependent Lyapunov function, a new mixed H_2/H_∞ performance criterion is presented. Upon this performance criterion, a sufficient condition for the full-order mixed H_2/H_∞ filter is derived in terms of linear matrix inequalities. The filter can be obtained from the solution of a convex optimization problem. The proposed filter design procedure is less conservative than the strategy based on the quadratic stability notion. A numerical example is given to illustrate the feasibility of the proposed approach.  相似文献   

5.
The problem of H∞ filtering for polytopic Delta operator linear systems is investigated. An improved H∞ performance criterion is presented based on the bounded real lemma. Upon the improved performance criterion, a sufficient condition for the existence of parameter-dependent H∞ filtering is derived in terms of linear matrix inequalities. The designed filter can be obtained from the solution of a convex optimization problem. The filter design makes full use of the parameter-dependent approach, which leads to a less conservative result than conventional design methods. A numerical example is given to illustrate the effectiveness of the proposed approach.  相似文献   

6.
This study deals with the robust H-infinity filtering for a class of Delta operator systems with polytopic uncertainties. By the aid of introducing two slack matrices to eliminate the coupling between systems matrices and Lyapunov matrices, an improved version of the bounded real lemma is given via linear matrix inequality formulation, which shows a close correspondence between the continuous-and discrete-time H-infinity performance criterion. Based on it, the existence condition of the desired filter is obtained such that the corresponding filtering error system is asymptotically stable with a guaranteed performance index. A numerical example is employed to illustrate the feasibility and advantages of the proposed design.  相似文献   

7.
This paper discusses the problem of the H∞ filtering for discrete time 2-D singular Roesser models (2-D SRM). The purpose is to design an observer-based 2-D singular filter such that the error system is acceptable, jump modes free and stable, and satisfies a pre-specified H∞ performance level. By general Riccati inequality and bilinear matrix inequalities (BMI), a sufficient condition for the solvability of the observer-based H∞ filtering problem for 2-D SRM is given. A numerical example is provided to demonstrate the applicability of the proposed approach.  相似文献   

8.
This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivalent switching fuzzy system. Then, based on the piecewise Lyapunov function and matrix decoupling technique, a new delay-dependent non-fragile H∞ filtering method is proposed for the switching fuzzy system. The proposed condition is less conservative than the previous results. Since only a set of LMIs is involved, the filter parameters can be solved directly. Finally, a design example is provided to illustrate the validity of the proposed method.  相似文献   

9.
This paper discusses the problem of the H∞ filtering for discrete time 2-D singular Roesser models (2-D SRM). The purpose is to design an observer-based 2-D singular filter such that the error system is acceptable, jump modes free and stable, and satisfies a pre-specified H∞ performance level. By general Riccati inequality and bilinear matrix inequalities (BMI), a sufficient condition for the solvability of the observer-based H∞ filtering problem for 2-D SRM is given. A numerical example is provided to demonstrate the applicability of the proposed approach. Key words 2-D singular systems, jump modes, general Riccati inequality, bilinear matrix i  相似文献   

10.
This paper investigates a fault detection problem for a class of discrete-time Markovian jump systems with norm-bounded uncertainties and mode-dependent time-delays. Attention is focused on constructing the residual generator based on the filter of which its parameters matrices are dependent on the system mode, that is, the fault detection filter is a Markovian jump system as well. The design of fault detection filter is reduced to H-infinity filtering problem by using H-infinity control theory, which can guarantee the difference between the residual and the fault (or, more generally weighted fault) as small as possible in the context of enhancing the robustness of residual to modeling errors, control inputs and unknown inputs. Sufficient condition for the existence of the above filters is established by means of linear matrix inequalities, which can be readily solved by using standard numerical software. A numerical example is given to illustrate the feasibility of the proposed method.  相似文献   

11.
This paper deals with the problem of gain-scheduled L-one control for linear parameter-varying (LPV) systems with parameter-dependent delays. The attention is focused on the design of a gain-scheduled L-one controller that guarantees being an asymptotically stable closed-loop system and satisfying peak-to-peak performance constraints for LPV systems with respect to all amplitude-bounded input signals. In particular, concentrating on the delay-dependent case, we utilize parameter-dependent Lyapunov functions (PDLF) to establish peak-to-peak performance criteria for the first time where there exists a coupling between a Lyapunov function matrix and system matrices. By introducing a slack matrix, the decoupling for the parameter-dependent time-delay LPV system is realized. In this way, the sufficient conditions for the existence of a gain-scheduled L-one controller are proposed in terms of the Lyapunov stability theory and the linear matrix inequality (LMI) method. Based on approximate basis function and the gridding technique, the corresponding controller design is cast into a feasible solution problem of the finite parameter linear matrix inequalities. A numerical example is given to show the effectiveness of the proposed approach.  相似文献   

12.
考虑有限字长影响的离散时间非脆弱H∞滤波   总被引:2,自引:0,他引:2  
The nonfragile H_∞filtering problem affected by finite word length (FWL) for linear discrete-time systems is investigated in this paper.The filter to be designed is assumed to be with additive gain variations,which reflect the FWL effects on filter implementation.A notion of structured vertex separator is proposed to deal with the problem and exploited to develop sufficient conditions for the nonfragile H_∞filter design in terms of a set of linear matrix inequalities (LMIs).The design renders the augmented system asymptotically stable and guarantees the H_∞attenuation level less than a prescribed level.A numerical example is given to illustrate the effect of the proposed method.  相似文献   

13.
This paper investigates the robust H∞ filtering problem for uncertain two-dimensional (2D) systems described by the Roesser model. The parameter uncertainties considered in this paper are assumed to be of polytopie type. A new structured polynomi-ally parameter-dependent method is utilized, which is based on homogeneous polynomially parameter-dependent matrices of arbitrary degree. The proposed method includes results in the quadratic framework and the linearly parameter-dependent framework as special cases for zeroth degree and first degree, respectively. A numerical example illustrates the feasibility and advantage of the proposed filter design methods.  相似文献   

14.
This paper investigates the robust H∞ filtering problem for uncertain two-dimensional (2D) systems described by the Roesser model. The parameter uncertainties considered in this paper are assumed to be of polytopie type. A new structured polynomi-ally parameter-dependent method is utilized, which is based on homogeneous polynomially parameter-dependent matrices of arbitrary degree. The proposed method includes results in the quadratic framework and the linearly parameter-dependent framework as special cases for zeroth degree and first degree, respectively. A numerical example illustrates the feasibility and advantage of the proposed filter design methods.  相似文献   

15.
The problem of H∞ filtering for polytopic Delta operator linear systems is investigated. An improved H∞ performance criterion is presented based on the bounded real lemma. Upon the improved performance criterion, a sufficient condition for the existence of parameter-dependent H∞ filtering is derived in terms of linear matrix inequalities. The designed filter can be obtained from the solution of a convex optimization problem. The filter design makes full use of the parameter-dependent approach, which leads t...  相似文献   

16.
The problem of robust H-infinity control for a class of uncertain singular time-delay systems is studied in this paper. A new approach is proposed to describe the relationship between slow and fast subsystems of singular time- delay systems, based on which, a sufficient condition is presented for a singular time-delay system to be regular, impulse free and stable with an H-infinity performance. The robust H-infinity control problem is solved and an explicit expression of the desired state-feedback control law is also given. The obtained results are formulated in terms of strict linear matrix inequalities (LMIs) involving no decomposition of system matrices. A numerical example is given to show the effectiveness of the proposed method.  相似文献   

17.
The H∞ synchronization problem for a class of delayed chaotic systems with external disturbance is investigated. A novel delayed feedback controller is established under which the chaotic master and slave systems are synchronized with a guaranteed H∞ performance. Based on the Lyapunov stability theory, a delay-dependent condition is derived and formulated in the form of linear matrix inequality (LMI). A numerical simulation is also presented to validate the effectiveness of the developed theoretical results.  相似文献   

18.
This paper develops fuzzy H_∞filter for state estimation approach for nonlinear discrete- time systems with multiple time delays and unknown bounded disturbances.We design a stable fuzzy H_∞filter based on the Takagi-Sugeno (T-S) fuzzy model,which assures asymptotic stability and a prescribed H_∞index for the filtering error system.Sufficient condition for the existence of such a filter is established by solving the linear matrix inequality (LMI) problem.The LMI problem can be efficiently solved with global convergence using the interior point algorithm.Simulation examples are provided to illustrate the design procedure of the proposed method.  相似文献   

19.
In this paper, the robust H∞ control problem for uncertain discrete-time systems with time-varying state delay is con- sidered. Based on the Lyapunov functional method, and by resorting to the new technique for estimating the upper bound of the difference of the Lyapunov functional, a new less conservative sufficient condition for the existence of a robust H∞ controller is obtained. Moreover, the cone complementary linearisation procedure is employed to solve the nonconvex feasibility problem. Finally, several numerical examples are presented to show the effectiveness and less conservativeness of the proposed method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号