首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
为推动煤热解产物半焦在电站锅炉上的安全高效利用,在某300 MW机组煤粉锅炉上开展了大比例掺烧半焦的现场试验,对不同半焦掺烧比例下的锅炉性能及NOx排放特性进行了比较分析。结果表明:半焦具有良好的着火性能,掺烧后能够改善原煤质的燃烧特性;采用“分磨制粉、分仓储存、炉内分层掺混”的掺烧方式可以实现半焦掺烧比例50%下锅炉的安全稳定运行;在300 MW负荷下,与掺烧前相比,半焦掺烧比例为50%时,锅炉效率从90.36%升高至92.79%,炉堂出口NOx排放质量浓度从493.85 mg/m3降低至435.86 mg/m3。煤粉锅炉大比例掺烧半焦可提高锅炉效率,降低NOx排放质量浓度,但是炉膛出口温度稍有增加,减温水量增大。  相似文献   

2.
以330 MW机组煤粉锅炉为研究对象,采用数值模拟方法研究了水煤浆热解气的脱硝作用,重点讨论了主燃区过量空气系数α1和热解气比例β对炉内燃烧特性和NOx排放的影响规律。结果表明:当β保持不变时,随着α1减小,主燃区温度降低,燃尽区及炉膛出口温度升高;同时,α1的减小增强了主燃区的还原性气氛,有利于提高热解气的脱硝速率,从而降低炉膛出口的NOx质量浓度,但α1的减小会影响煤粉的燃烧性能并使得炉膛出口CO增多;随着β的增加,炉膛火焰中心上移,热解气对NOx的还原速率升高;当β从5%增至20%时,炉膛整体的NOx质量浓度呈现先减小后增大的趋势,β=15%时NOx质量浓度最低,热解气的NOx还原效率为44.35%。  相似文献   

3.
刘志强 《中国电力》2013,46(9):29-33
以某电厂150 MW循环流化床锅炉为研究对象,就掺烧不同比例煤泥对锅炉燃烧特性影响进行了试验研究。试验通过不掺烧煤泥、掺烧煤泥主泵转速25%和掺烧煤泥主泵转速40% 3个工况进行了对比试验。结果表明,随着循环流化床锅炉掺烧煤泥比例的增加,锅炉平均床温明显降低,更接近于最佳脱硫床温;炉膛温度场分布更趋均匀,更有利于炉内燃烧和受热面吸热;炉内屏式过热器壁温经常超温现象得到显著改善;锅炉主汽温度偏低得到明显提高。  相似文献   

4.
基于超临界600 MW机组循环流化床(CFB)锅炉,在1 MW机组CFB燃烧试验台上进行了煤泥掺烧试验,就大比例掺烧煤泥对锅炉性能及污染物排放的影响进行了研究。试验结果表明:煤泥掺烧比例最高可达到70%,此掺烧比例下燃烧稳定;飞灰份额随煤泥掺烧比例提高而提高,掺烧比例为35%、55%和70%条件下,飞灰份额分别为77.84%、82.32%和83.78%;大比例掺烧煤泥后炉内循环物料量减少,不利于整个炉膛保持上下均匀的温度场分布;掺烧煤泥后的燃烧效率在99.29%~99.41%之间,掺烧煤泥比例并不会明显影响燃烧效率;掺烧煤泥对于煤的结焦特性无明显影响;煤泥掺烧比例的提高导致SO2排放质量浓度先降后升,而NOx排放逐渐降低。  相似文献   

5.
随着煤炭洗选工业的快速发展,其工艺产生的废弃物——煤泥的产量明显上升,而将煤泥掺混到燃煤锅炉中进行燃烧是实现煤泥资源化处置的有效手段之一。通过现场试验与数值模拟相结合的方法,对一台W火焰锅炉在低负荷条件下无烟煤掺烧煤泥的燃烧特性进行了研究,分析了掺烧不同比例(0%、5%、10%、15%、20%、25%)煤泥炉内燃烧及排放特性。结果显示,当煤泥掺烧比例小于20%时,炉内温度水平降低,飞灰含碳量上升,NO_x排放下降;当煤泥掺混比例大于20%时,高挥发分的煤泥提前燃烧对无烟煤后期燃烧产生较大的负面影响,使得无烟煤的燃烧和燃尽过程有所推迟,且混煤燃烧不充分,NO_x排放上升。  相似文献   

6.
为揭示大容量高水分褐煤机组的超低负荷运行特性及性能优化方式,基于建立并验证的燃煤锅炉燃烧模型,研究了33%最大连续额定负荷下燃烧器运行方式对660 MW高水分褐煤锅炉炉内燃烧、传热及NOx转化特性的影响。结果表明:超低负荷下炉内仍可形成良好组织的流动及燃烧场,但锅炉综合性能显著下降,如燃烧温度及受热面吸热量显著降低、炉膛出口NOx排放增加等;运行4层燃烧器时投运连续的下、中间组或中间、上组燃烧器,可有效防止燃烧、传热过程的显著恶化及NOx排放的明显增加;燃烧器投运层数影响锅炉综合性能,运行2层燃烧器时炉内剧烈燃烧区域过于集中,不利于维持较高的燃烧温度及传热强度,炉膛出口NOx排放升高。研究结果揭示了超低负荷下燃烧器投运位置及层数对660 MW高水分褐煤锅炉综合性能的影响,可为大规模可再生能源电力并网背景下高水分褐煤机组参与深度调峰的运行调整及优化提供指导。  相似文献   

7.
以济三电力有限公司440 t/h循环流化床(CFB)锅炉为研究对象,就煤泥掺烧比例变化对锅炉燃烧特性的影响进行了试验研究.结果表明:随着煤泥掺烧比例的增大,锅炉密相区床温均有所下降,77%掺烧比例时床温降到860℃左右,有利于炉内脱硫,脱硫效率达到86%以上;随着煤泥掺烧比例的增加,锅炉效率由低到高,再由高到低变化;当煤泥掺烧比例在50%~60%范围内时对应锅炉效率峰值,超过这个比例后锅炉效率明显下降.  相似文献   

8.
利用Fluent软件对某电厂600 MW煤粉锅炉混煤掺烧过程进行数值模拟,研究掺烧小差异特性混煤对炉内燃烧过程的影响。通过对不同掺烧比例工况下温度场,烟气成分,炉膛出口NOx浓度,燃烧器喷口颗粒燃烬率的分析,结果表明:易燃煤种在小差异特性煤种掺烧过程中起到的促进和抑制燃烧作用并不明显;与单烧设计煤种相比,掺烧比例增加,有利于增加主燃区内煤粉颗粒燃烧份额,提高喷口颗粒燃烬率;最上层燃烧器喷口的颗粒燃烬率明显低于下层,所以实际运行中应该保证最上层燃烧器喷口周围氧气的充足和均匀分布。  相似文献   

9.
燃煤锅炉是中国CO2的主要排放源之一,氨和生物质作为无碳、清洁替代能源用于燃煤锅炉,是中国实现“碳达峰、碳中和”目标的重要技术途径。为探究氨与其他燃料掺烧的可行性,利用清华大学25kW一维炉系统,通过调节气体流量、更换不同口径的氨气喷头,研究一种生物质燃料(玉米秸秆粉)与氨在多种掺烧比(热值比0~40%)和不同氨喷入速度下的燃烧特性、污染物及细颗粒物生成特性。结果表明,相较纯生物质燃烧,氨的掺入会吸收一部分热量用于自身预热,引起炉膛内烟气温度分布发生变化;提高氨的掺烧比,尾部烟气中NOx的浓度近似线性增长,NH3浓度无明显增加,飞灰中PM1~10质量占比增大,在氨的掺烧比低于40%时,烟气中NH3浓度不高于2mg/m3,不存在氨逃逸现象,但纯氨燃烧会导致烟气中NH3浓度激增。氨的掺混情况也会对烟气中NOx浓度产生影响,当氨喷入速度与一次风速差越大,物料之间混合越不均匀,烟气中NOx浓度越低,...  相似文献   

10.
氨作为无碳燃料在燃煤机组上耦合燃烧可实现减污降碳,对助力我国“双碳”目标的实现具有重要意义。调研了氨作为替代燃料的优劣势、燃煤机组耦合氨的燃烧特性及相关研究的最新进展,认为在掺氨比例小于20%(热量比值,下同)时,采用合适的流速与方式将氨射入炉内相对低O2浓度、高NOx浓度区域,对炉内燃烧稳定性、炉膛出口NOx浓度与飞灰含碳量等燃烧特性的影响较小。针对某330 MW燃煤机组耦合氨燃烧开展碳排放强度和热力性能的计算,并结合“绿氨”生产成本对2种碳减排方式做经济性分析,结果表明:该机组掺氨后锅炉排烟温度有所降低,锅炉热效率略有提高;在掺氨20%时该机组年碳减排量约26.73万t,碳排放强度为719.90 g/(kW·h);在20%碳减排幅度下,考虑煤价浮动,当制“绿氨”电价低于0.10~0.18元/(kW·h)时,该机组掺氨较碳捕集与封存具有经济性优势。相关结论可为燃煤机组掺氨燃烧的研究及实践提供参考。  相似文献   

11.
为解决燃煤机组在深度调峰下NOx排放过高的问题,针对某600 MW四角切圆燃煤锅炉的燃烧特性开展数值模拟,分析在30%额定负荷下,燃尽风量、配煤-配风方式和燃尽风来源对炉内温度场、组分场和燃尽率的影响。结果表明:30%额定负荷下,增加燃尽风量可有效减少NOx的生成,与原工况相比,工况3的NOx减排率达到11.9%;主燃区采用正塔配煤、倒塔配风方式时,虽然炉膛出口温度稍有下降,但工况9的NOx减排率可达14.2%;高速射流燃尽风能够穿透主烟气气流参与燃烧,可使工况16的NOx减排率高达17.8%。低负荷下,采用热一次风代替燃尽风并优化燃烧的方式可有效控制NOx排放。  相似文献   

12.
300MW煤粉/高炉煤气混燃锅炉燃烧特性数值模拟   总被引:1,自引:0,他引:1  
钢厂高炉煤气是一种低热值燃料,它和煤粉在炉内掺烧是其一种有效的利用途径。但煤粉掺烧高炉煤气后燃烧特性与纯煤粉燃烧有很大不同,掺烧过程中易发生过/再热器超温、飞灰含碳量过高等问题,导致其在大型锅炉上的应用很少。针对某钢厂300MW四角切圆煤粉/高炉煤气混燃锅炉,使用二混合分数法对其燃烧特性进行数值模拟。对比研究了纯燃煤工况和高炉煤气掺烧量分别为10%、20%、30%的工况,发现掺烧高炉煤气时炉内温度水平有明显下降(如,掺烧10%高炉煤气时截面最高温度降低81K),且随着掺烧量的增加而加剧,但下降的趋势变缓。掺烧高炉煤气后产生烟气量增多,炉膛出口烟速有明显增加,煤粉颗粒实际停留时间缩短,使得煤粉燃尽变得困难。同时,NO的生成量随高炉煤气掺烧量的增加而明显减少。  相似文献   

13.
采用单、双混合分数/PDF模型,对某台420 t/h四角切圆燃烧锅炉燃烧单煤和掺烧生活污泥进行了数值模拟,研究了炉内流动、燃烧和污染物排放特性。结果表明,在相同条件下燃烧单煤,锅炉70%负荷和100%负荷工况下的模拟数据与现场试验数据相符合;锅炉100%负荷下煤泥混烧时的NOx排放浓度低于燃烧单煤工况,随着污泥掺混比的增加煤粉燃尽率稍有下降,炉膛整体温度分布和烟气组分分布大致相同,对炉内流动、燃烧和污染物排放特性不会产生明显影响。  相似文献   

14.
煤矸石和含甲烷量较低的煤层气均属于低热值的燃料。而循环流化床最大的特点是环保,适合燃烧劣质煤,因此循环流化床为混烧这两种低热值燃料提供了可靠的平台。通过对某一炉膛内煤矸石和煤层气燃烧情况进行数值模拟,发现与炉内燃煤相比,炉内煤矸石和煤层气混合燃烧也可以得到较好的燃烧效果。煤矸石和煤层气的掺烧比和一二次风比例对炉内燃烧特性有重要影响,当掺烧比8:2,一二次风比例7:3时,炉膛燃烧效果最好。  相似文献   

15.
李博 《热力发电》2020,49(5):152-156
利用循环流化床(CFB)锅炉焚烧处置城市污泥具有重要意义。本文对比分析了CFB锅炉污泥掺烧的2种可行性技术方案湿污泥直接入炉掺烧和湿污泥干化后掺烧,针对某电厂240t/hCFB锅炉,最终采用湿污泥直接入炉掺烧进行改造。运行结果表明:掺烧污泥对CFB锅炉的运行床温、氧量、炉膛出口负压值均有明显影响,相同负荷和给煤量下,当CFB锅炉污泥掺烧比例达到12%时,运行床温降低约15℃,氧量降低约14.7%,负压升高约378.4%;掺烧污泥后,选择性非催化还原脱硝还原剂耗量变化较小,说明掺烧污泥对NOx排放影响较小。本文研究成果对同类型CFB锅炉改造及运行具有借鉴价值。  相似文献   

16.
通过模拟在某燃烧铁法次烟煤的600 MW机组锅炉中掺烧神华煤的分层混煤燃烧过程,分析了在掺烧不同层数神华煤时炉膛内速度场和温度场的分布,研究了锅炉内掺烧神华煤的层数对炉膛出口烟温和炉内结焦的影响,在保证锅炉安全运行的前提下给出了最优的分层掺烧方式,可供同类型锅炉设计和运行时参考。  相似文献   

17.
王小龙  张飞龙  王里  刘兴    谭厚章 《热力发电》2022,51(2):112-116
建立了贫煤锅炉配煤掺烧数值模型,对330 MW机组锅炉不同配煤掺烧方案进行计算,分析低氮燃烧模式下焦炭燃尽率的关键影响因素。结果表明:掺烧位置对燃尽率有显著影响,送入4层烟煤和2层贫煤时,随着贫煤送入高度上移,炉膛出口焦炭燃尽率由98.9%降低至98.2%;随着送入贫煤层数由1层增加至5层时,焦炭燃尽率由99.1%降低至97.2%,焦炭燃尽率随着贫煤掺烧比例增加而降低;送入小粒径贫煤层数由0层增加至5层时,焦炭燃尽率由97.6%增加至99.2%,而仅通过顶部2层一次风喷口送入小粒径贫煤,炉膛出口焦炭燃尽率即可达到98.9%。配煤掺烧数值模型能够模拟炉内配煤掺烧过程,获得煤粉锅炉炉内温度分布及飞灰含碳量的定量数据,为确定最优配煤掺烧方案提供指导。  相似文献   

18.
张定海  毛宇  谢勇  韦耿 《热力发电》2023,(7):174-180
为探索富氧燃烧高效低氮燃烧的途径,在东方锅炉试验中心下行炉上开展神府烟煤、云南劣质烟煤的富氧分级燃烧特性试验研究,探索2种煤在富氧分级燃烧条件下的燃尽特性及氮氧化物排放特性。试验结果表明:在富氧燃烧条件下,采用燃尽风分级燃烧,合理控制氧气分级送入,神府烟煤燃烧效率可达99%以上,烟气中NOx排放可控制在19.10 mg/MJ以内;云南劣质烟煤因着火延迟,燃尽需要足够长的停留时间,其燃烧效率略低,通过合理氧分级,燃烧效率最高可达90%以上,烟气中NOx排放可控制在16.83 mg/MJ内;富氧燃烧炉膛温度对NOx累积生成释放曲线的影响与空气燃烧一致,炉膛温度越高,煤粉颗粒升温速率越快;采用富氧分级燃烧,合理控制氧分级送入时机和位置,可寻找到较高的燃烧效率和较低的NOx排放,实现富氧燃烧高效低氮排放。  相似文献   

19.
为了研究煤泥热解气喷口位置和再燃区过量空气系数对循环流化床锅炉炉内温度场、NOx的生成浓度和烟气组分变化的影响,采用ChemKin软件,基于煤泥热解气再燃脱硝计算数据,获得包含30种组分和117步基元反应的NOx还原简化机理,并耦合CFD进行了数值模拟计算。结果表明:煤泥流化床锅炉耦合煤泥热解气再燃会使炉膛高度方向温度升高;煤泥热解气再燃能有效降低NOx的生成浓度,煤泥热解气喷口位于再燃区上部、中部、下部时NOx生成的平均质量浓度分别为142.58mg/m3、79.59mg/m3和195.61mg/m3,其中煤泥热解气喷口位于再燃区中部的效果最好。  相似文献   

20.
通过2种市政污泥分别和某电厂实际用煤混烧的实验,研究污泥的种类、掺烧比例(5%、10%、20%、50%)对混烧时颗粒物生成特性的影响。在沉降炉1400℃、空气气氛的燃烧实验结果表明:掺烧了污泥的样品能够从不同度上抑制PM1的生成,燃煤单独燃烧时PM1生成量为0.765mg/g,而掺烧了20%东、西污泥的样品PM1的生成量分别为0.645mg/g和0.657mg/g。东污泥混烧后PM1的生成量相比理论计算值有约20%的减排作用,主要是因为混烧时煤中的硅铝酸盐吸收污泥中易气化元素P、S、Cl使得生成PM1的前驱物减少,而煤中细硅铝酸盐颗粒又会被污泥中Ca-Fe-P-Si-Al颗粒所捕获长大,造成了混烧时PM1中的P、S、Cl、Si和Al含量与理论值相比有所降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号