共查询到20条相似文献,搜索用时 0 毫秒
2.
氧化石墨烯(GO)因其出色的性能在改善水泥基材料微观结构、力学性能上均有很好的应用前景。然而,GO的增强效果很大程度上取决于其在水泥基体中的分散性。总结了近年来GO在水泥基材料中的研究成果,重点综述了GO的分散方式、分散机理以及相应的力学性能改善机理;对比了不同GO分散方式的优缺点,分析了GO分散前后对水泥基材料微观结构和力学性能的影响;提出了目前研究存在的问题,并对未来研究趋势进行展望;旨在为后续GO在水泥基材料中的稳定应用提供参考,以促进制备高效功能化的GO水泥基复合增强材料。 相似文献
3.
4.
5.
高吸水树脂(SAP)粒径变化会改变到其吸-释水过程,可能含影响到胶凝材料水化和混凝土的性能。本研究采用两种粒径差异较大的SAP,研究高性能水泥基材料自收缩和干燥条件(60%RH)强度的变化,并通过水化和孔结构分析,探讨了强度变化的原因。研究结果表明,SAP粒径增大降低了高性能水泥基材料自收缩,且在总水胶比相同时提高了强度。这些影响与硬化浆体水化程度提高和大孔数量减小有关。 相似文献
6.
7.
氧化石墨烯对水泥水化晶体形貌的调控作用及对力学性能的影响 总被引:1,自引:0,他引:1
用Hummers法制备了氧化石墨烯(GO)并用超声波将其分散制备了纳米片层分散液,用XRD和AFM表征了分散的效果。研究了不同含氧量GO对水泥水化晶体微观形貌及胶砂耐折强度和抗压强度的影响,结果表明含氧量为18.65%和25.53%的GO可使水泥水化产物成为花朵状微晶体,而且形状统一、分布均匀,具有显著的增韧增强效果。研究结果也说明了GO能够调控水泥水化晶体产物的形状和尺寸,GO对于水泥水化反应产物具有促进作用和模板效应。研究结果对于提高混凝土建筑的抗裂缝和耐久性具有积极的意义。 相似文献
8.
本文以试验为手段,分别研究了橡胶集料掺量、颗粒粒径对水泥基材料的力学性能的影响规律。通过对比分析和引入单位强度效应因子参数,定量分析了橡胶集料对水泥基材料的强度效应。试验结果表明,单位体积内橡胶集料体积率每增加1%,水泥基材料的抗压强度损失率在2%~5%范围内变动。 相似文献
9.
水泥基复合材料凭借其原料丰富、价格低廉、生产工艺简单、强度高等优点,广泛应用于现代化工程建设.但是这种材料长久以来都有高脆性以及裂缝等一系列的问题.针对这些问题世界各国的研究人员都主要致力于改善水泥基材料的力学性能.但是在目前的情况下,现代建筑对水泥基材料提出了许多新的要求,不仅要有好的力学行为,还要具有尽可能多的附加功能.合适的功能填料的掺入不仅能够使得水泥基复合材料的力学性能和耐久性能得到提升,还能有效地调控水泥基材料的导电率、热导率等一系列其他功能.钢纤维、聚合物纤维和矿物纤维等是之前比较常见的功能掺料,这些材料依靠它们的强度和韧性可以用来改善材料的力学性能.但这些增强材料并不能在结构上改变水泥的水化产物,因此水泥基材料的高脆性及裂缝等问题依存在.而部分碳基材料在掺入到水泥基复合材料中以后可以对水泥基材料实现改性,不仅能从微观方面改变其结构,从而改善力学性能,还可以改善如导电性、导热性等性能.使水泥基复合材料能够尽可能地满足时代的要求.本文在近年来对多种不同的碳基材料掺杂水泥基复合材料研究的基础上,分别总结了不同碳基材料(碳纤维CF、碳黑CB、碳纳米管CNTs、石墨烯GR以及氧化石墨烯GO)对水泥基复合材料性能影响的基本原理,综述了近年来五种材料掺加在水泥基复合材料中的相关研究.此外,本文同时也对这些材料的复合掺入以及互相之间的改性掺入后的效果进行了简单总结,并且同时对水泥基复合材料的研究前景提出了一点看法. 相似文献
10.
研究了水化过程中空白水泥石与炭纤维水泥石的电阻特性,探讨了炭纤维水泥石的电阻率与其自身水化进程以及强度的关系,并对掺加早强剂和热养护炭纤维水泥石的电阻率与水化进程以及强度之间的关系进行了进一步的探讨。研究结果表明:水化过程中水泥石的极化作用较强,测试时不能获得稳定的电阻率,掺入质量分数0.30%以上的炭纤维后可以获得稳定的测试电阻。纤维掺量为0.35%的水泥石的电阻率与水化进程呈线性关系。掺加早强剂和热养护的炭纤维水泥石的电阻率与水化进程同样呈现线性关系。应用炭纤维水泥基材料电阻率对其自身水化进程的监测是可行的。 相似文献
11.
基于建筑垃圾再生细骨料替代天然砂,进行氧化石墨烯(GO)改性再生水泥基复合材料的综合物理性能和水化机制研究。采用超声分散GO及振动搅拌制备再生水泥基复合材料,综合耐久性能测试结果表明:和不掺GO再生水泥基复合材料相比,添加0.03% GO改性7 d龄期强度的GO/再生水泥基复合材料抗折和抗压强度分别提高了16%和21%;添加0.02% GO改性的28 d龄期强度的GO/再生水泥基复合材料抗折和抗压分别提高了13.7%和13.6%。GO/再生水泥基复合材料龄期7 d耐候、50次冻融循环后力学性能均良好;氯离子含量皆小于0.06%。放射性检测结果表明:GO/再生水泥基复合材料内照射指数IRa和外照射指数Ir均属于A类建筑材料。通过XRD、TG-DTA、SEM等手段对GO/再生水泥基复合材料水化机制研究表明:GO促进了钙矾石(AFt)晶体的大量生成及胶凝孔中存在更多的自由水,且对后期氢氧化钙(CH)的产生有抑制作用,进而提高了GO/再生水泥基复合材料综合物理性能。 相似文献
12.
13.
研究了石墨烯对水泥基复合材料的抗压抗折强度、劈裂抗拉强度、流变性能等力学性能的影响,及石墨烯对水泥砂浆自收缩和干燥收缩等变形性能的影响.结果表明:石墨烯会增加水泥浆体的粘度,水泥净浆的流变特性符合宾汉姆流体模型;掺加适量石墨烯能够提升水泥基材料的力学性能,并且对水泥基材料的自收缩及干燥收缩具有显著的抑制效果.力学和收缩... 相似文献
14.
石墨烯(G)/氧化石墨烯(GO)以其优异的力学、导电以及导热性能在改善水泥基材料力学以及功能性等方面表现出良好的应用前景。然而,这些纳米材料在水泥基材料中难以分散,限制了它们在水泥基复合材料中的实际应用。近些年来,研究者们开始将纤维同这些纳米材料复掺到水泥基材料中,其分散性能得到了很大的提升。从材料在水泥基中分散问题、水泥水化过程、力学性能、功能性、耐久性能等5个方面系统地阐述了石墨烯及氧化石墨烯和其他纤维混杂对于水泥基复合材料的影响,对今后水泥基复合材料性能的提升具有指导作用。 相似文献
15.
16.
为了探明氧化石墨烯(GO)对水泥基复合材料徐变的调控机制,采用徐变加载架对不同GO掺量水泥胶砂的徐变进行了测试,并从水泥基复合材料的水化和微观结构入手,采用SEM、XRD、FTIR等研究了GO对水泥胶砂徐变的影响,并对调控机制进行了解释。结果表明:GO可以调节水泥基复合材料水化产物的形状与聚集态,降低宏观徐变。当GO掺量(与水泥质量比)大于0.02%时,水泥胶砂的徐变大幅度降低。GO的掺入促进了水化硅酸钙(CSH)对水分子的吸附与扩散,增加了内部CSH含量,使水化产物的结构更加致密。GO与CSH形成的氢键可提升二者之间的黏结力,并增强水分子在CSH-GO片层间的吸附,从而实现了对水泥胶砂徐变的调控。研究成果对于实现按终端用途进行水泥基复合材料设计具有重要的理论价值,并有望在预应力混凝土结构中得到应用。 相似文献
17.
通过氧化和超声波分散制备了氧化石墨烯(GO)纳米片层分散体系,研究了GO纳米片层对水泥基复合材料的增韧效果及作用机制。用EDS、FTIR、XRD、SEM和AFM对GO纳米片层的结构进行了表征。研究结果表明:所得GO含氧量为32.3wt%,GO纳米片层的厚度为6 nm左右,在GO片层表面含有羟基、羧基和磺酸基等活性基团。水泥基复合材料的SEM形貌及力学性能测定结果表明:当GO掺量为0.03wt%时,GO能够使水泥水化产物形成花朵状晶体,并使水泥基复合材料的拉伸强度、抗折强度和压缩强度比对照样品分别提高了65.5%、60.7%和38.9%。提出了GO纳米片层对水泥水化产物的模板调控机制,揭示了花状晶体的形成过程。 相似文献
18.
通过氧化反应和超声波分散作用制备了不同含氧量氧化石墨烯(GO)纳米分散液,研究了GO氧含量、用量和水化时间对水泥基复合材料微观结构和力学性能的影响。研究结果表明GO能够调控水泥水化产物的形状,促使水泥水化反应形成规整的花状晶体,使得水泥基复合材料的强度特别是拉伸强度和抗折强度显著提高。研究结果证实了GO在水泥复合材料水化过程中起到模板作用,能够调控水泥水化产物的微观结构及提高水泥基复合材料的韧性,同时提出了GO调控水泥基复合材料微观结构的作用机理。本文结果提供了一种可显著增强增韧水泥基复合材料的新方法,具有潜在的应用前景。 相似文献
19.
通过氧化和超声波分散制备了浓度为7. 4 g/L的氧化石墨烯(GO)分散液,研究了不同GO掺量条件下硅酸盐体系自流平砂浆及其硬化体的流动度、凝结时间、力学性能和耐久性能,并借助XRD、SEM和MIP等手段分析其改性机理。实验得出GO的最佳掺量是0. 04%(质量分数)。在该掺量下,相比未掺GO的空白样,水泥基自流平砂浆的流动度与凝结时间稍有降低,28 d抗折、抗压强度和耐磨性能分别提高38. 9%、27. 7%和48. 8%。28 d试样的氯离子渗透性能较空白样降低了98. 5%。微观测试结果表明,氧化石墨烯能够促进硅酸盐水泥的水化进程,调控水泥水化产物的微观结构,从而提高水泥基自流平材料的力学性能和耐久性能等。 相似文献
20.
水化硅酸钙晶种的制备及对水泥强度的影响 总被引:2,自引:0,他引:2
为了研究水泥晶种的制备技术及对水泥强度的影响,在蒸压条件下,选取天然硅质原材料硅藻土和钙质原材料熟石灰,利用水热合成法制备C-S-H凝胶作为水泥晶种,并研究了3种钙硅材料的配制比例和不同热工制度制备的晶种对水泥强度的影响.研究结果确定了钙硅比为1.2,合成压力在0.1 MPa,合成时间1~3 h为水泥晶种的最佳合成工艺制度.试验结果表明:掺晶种后的C3S悬浮液液相中的钙离子析晶时间提前,缩短了凝结时间,加速C3S的早期水化;掺入晶种可有效地提高水泥的早期强度,其原因在于加晶种可以降低产物成核所需克服的势垒、促进成核、并有效抑制大晶粒的生长. 相似文献