首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
以枸杞馅料为研究对象,分析枸杞馅料贮藏期内水分、色泽、质构、微生物等指标的变化,并建立货架期预测模型。结果表明:枸杞馅料在4,25 ℃和37 ℃ 3个温度下,随贮藏时间的延长,其硬度、水分含量、菌落总数、霉菌数均逐渐增大,L值和a值则略有降低,枸杞馅料在25 ℃下贮藏品质劣变速度最慢。通过相关性分析,确定以菌落总数为反映枸杞馅料贮藏货架期的品质因子,建立不同温度条件下菌落总数生长动力学模型及随贮藏温度变化的动力学模型。动力学模型的准确因子、偏差因子和均方根误差分别为0.995~1.099,1.071~1.189和0.03~0.07。在此基础上建立枸杞馅料微生物预测模型并验证,预测值和实际值的相对误差在-1.77%~26.76%范围,模型可有效预测枸杞馅料货架期。本研究结果可为枸杞馅料的贮藏提供技术参考。  相似文献   

2.
不同贮藏温度下抹茶品质变化及其货架期预测   总被引:1,自引:0,他引:1  
以抹茶为研究对象,分析4个温度(-18、4、25、37℃)条件下抹茶贮藏期的品质变化,并构建抹茶货架期的预测模型。结果显示:各贮藏温度下抹茶的叶绿素含量、绿度、茶多酚含量、抗坏血酸含量和感官评分均呈下降趋势,而水分质量分数呈上升趋势;Pearson相关分析表明抹茶各品质指标中水分质量分数、叶绿素含量与感官评分相关性最高。结合Arrhenius方程建立抹茶货架期预测模型,水分和叶绿素预测模型中活化能Ea分别为10 269.77、7 140.86 kJ/mol,指前因子k0分别为0.659 4、0.026 2,且理论货架期与实际货架期较为相符,因此建立的模型可以以水分质量分数和叶绿素含量为品质指标对抹茶的货架期进行预测。  相似文献   

3.
建立针对不同贮藏温度下冷却猪肉的货架期预测模型,为猪肉贮藏和物流过程中品质评价、货架期预测提供技术支持。分析了0,2,4,6,8,10℃不同贮藏温度下猪肉的挥发性盐基氮(TVB-N)、pH值、色差(a*)、水分活度(Aw)与感官评定结果的相关性,利用一级反应动力学方程和Arrhenius方程求得TVB-N变化反应的活化能(E0)为87.19 kJ/mol,指前因子(k0)为2.169×1014,速率常数k为2.169×1014e-87190/RT,在此基础上建立了以TVBN为指标的冷却猪肉货架期预测模型。在0,4,8,10℃贮藏条件下对TVB-N预测模型进行验证,相对误差均小于10%,准确度和偏差度均为1.03,在可接受范围内。TVB-N是预测冷却猪肉货架期的有效指标,用其建立的货架期预测模型准确实用。  相似文献   

4.
通过对不同贮藏温度下椪柑果酒的感官、理化(挥发酸)和微生物(细菌总数)指标的变化分析,将感官威布尔危害分析(Weibull Hazard Analysis,WHA)模型和动力学模型分别结合Arrhenius方程,建立2种指标下椪柑果酒的货架期预测模型,并验证结果。研究结果表明,基于感官评价指标,在25,30,35,40℃温度下的货架期预测终点分别是620,436,310,222d,相对误差为-5.48%~5.52%;基于挥发酸评价指标,在25,30,35,40℃温度下的货架期预测终点分别是633,450,319,227d,相对误差为-2.74%~8.96%。椪柑果酒的贮藏温度与细菌总数相关性不显著,不作为具体参考指标。基于感官评价指标的货架期预测模型性能较优,可用于椪柑果酒的货架期终点预测。  相似文献   

5.
养殖尼罗罗非鱼鲜度特征及动力学模型构建   总被引:1,自引:0,他引:1  
通过感官、化学、微生物学方法对低温(0~10℃)和室温(25℃)贮藏尼罗罗非鱼鲜度特征进行评价,确定产品货架期及货架期终点细菌种群,运用平方根相对腐败速率方程构建货架期预测模型。结果表明:鲜鱼感官品质良好,菌落总数、假单胞菌数、产H2S细菌数和挥发性盐基氮(TVBN)分别为(4.41±1.13)、(3.39±1.09)、(2.01±0.88)(lg(CFU/g))和(8.53±0.73)mg/100g。低温贮藏罗非鱼货架期终点时,菌落总数、假单胞菌、产H2S细菌数和TVBN分别为(7.79±0.35)、(7.24±0.45)、(6.35±0.23)(lg(CFU/g))和(19.90±2.10)mg/100g,确定货架期为5.5~20.1d,优势菌是假单胞菌属,而室温贮藏的罗非鱼货架期为1.3d,优势菌为气单胞菌。0~25℃范围贮藏的罗非鱼品质动力学模型参数Tmin为-8.9℃,并用3、8℃恒温和变温等实际流通条件对货架期预测模型进行了验证,显示货架期预测模型能有效评价0~25℃范围内的罗非鱼品质。  相似文献   

6.
贮藏温度对薄膜包装菠菜品质的影响   总被引:4,自引:0,他引:4  
为研究贮藏温度对菠菜货架期的影响,首先从减少贮藏过程的失重率的角度对菠菜采用薄膜包装,然后研究菠菜在(0±0.5),(5±1),(10±1),(20±1)℃下贮藏期间的品质变化.结果表明,(0±0.5)℃下贮藏的菠菜具有较好的保鲜效果,(0±0.5)℃结合薄膜包装可以有效抑制失重率增加、叶绿素的分解、感官品质的下降和亚硝酸盐含量的增加,减少营养成分的损失,延长菠菜的货架寿命.  相似文献   

7.
以七成熟的草莓为试验材料,研究不同贮藏温度(4,10,25,37℃)对草莓贮藏过程中品质的影响,并以Arrhenius方程为基础,建立相关指标的动力学模型;经在不同温度下对模型的验证,相对误差在±10%内,说明预测结果良好,模型具有实用性。恒等变形后,得到货架期预测模型。在温度4~37℃范围,可根据综合模型对草莓的货架期进行预测。  相似文献   

8.
为建立调理肉饼中特定致腐菌的货架期预测模型。将特定致腐菌乳酸菌接种于经臭氧减菌化处理的调理肉饼中,真空包装后分别于-1℃、4℃、10℃、15℃和22℃条件下(温度波动为±1℃)贮藏,在贮藏期间(0~11 d)测定调理肉饼挥发性盐基氮值、pH值、硫代巴比妥酸值及菌落总数等指标,并进行感官评价,利用修正的Gompertz方程和平方根模型(B?lehrádek),建立以特定致腐菌乳酸菌为关键品质因子的调理肉饼微生物货架期模型。结果表明:修正的Gompertz方程能较好地拟合不同贮藏温度下微生物的生长曲线,应用平方根模型(B?lehrádek)描述温度对最大比生长速率(μ_(max))和迟滞期(Lag)的影响,均表现出良好的线性关系(R~2分别为0.98和0.83)。调理肉饼在-1℃、4℃、10℃、15℃和22℃下乳酸菌货架期最小腐败量对数平均值为(6.94±0.21) lg(cfu/g),平均最大菌数对数值为(8.65±0.16)lg(cfu/g),得到了在-1℃~22℃贮藏温度下调理肉饼的货架期预测模型。预测模型通过10℃和15℃贮藏温度下的货架期实测值来进行验证,相对误差均小于10%,表明基于平方根方程建立的模型可以有效地预测调理肉饼在-1℃~22℃贮藏温度条件下的特定致腐菌乳酸菌的货架期。  相似文献   

9.
不同贮藏温度下冷却猪肉货架期预测模型的构建   总被引:2,自引:0,他引:2  
董庆利  曾静  熊成  余华星  梁娜  胡梦涵  潘燕 《食品科学》2012,33(20):304-308
建立冷却猪肉中特定腐败菌的货架期预测模型。将气单胞菌接种到经80℃无菌水灭菌的猪精腿肉中,分别密封包装于0、4、7、15℃和20℃温度贮藏,测定各温度下接种猪肉的菌落总数(N)、pH值、TVBN值、TBA值,并进行感官评分。采用Origin 8.0分析软件对数据进行处理,结果表明:修正的Gompertz方程能较好地拟合不同温度下气单胞菌的生长动态,应用平方根模型(B lehrádek)描述温度对最大比生长速率(μmax)和迟滞期(Lag)的影响,均表现出良好的线性关系,R2分别为0.93和0.95。猪肉在0、4、7、15℃和20℃温度下气单胞菌的感官货架期终点菌数对数平均值为(6.33±0.14)(lg(CFU/g)),平均最大菌数对数为(7.36±0.21)(lg(CFU/g)),得到在0~20℃贮藏温度下冷却猪肉的货架期预测模型为SL=[1/(0.026T-0.00048)2]-[(7.36-lgN0)/2.718×(0.0102T+0.148)2]×{ln[-ln(6.33-lgN0)/(7.36-lgN0)]-1}。通过8℃和12℃贮藏温度下冷却猪肉的货架期实测值对构建的预测模型进行验证,相对误差均小于10%,表明建立的模型可以有效地预测冷却猪肉在0~20℃贮藏温度下的货架期。  相似文献   

10.
为延长鲜参的货架期,本实验采用充氮包装,研究贮藏温度在4、37 ℃和45 ℃条件下鲜参的理化指标 和微生物指标的变化,进一步通过研究鲜参在不同温度下的总皂苷含量和水分含量随时间的变化规律,建立总 皂苷含量与贮藏温度之间的一级反应动力学模型。结果表明:随贮藏温度升高,鲜参水分和总皂苷含量整体呈 逐渐下降的趋势,37 ℃时鲜参表面的菌落总数随贮藏时间的延长不断增长,而45 ℃条件下鲜参表面的菌落总数 随贮藏时间的延长呈下降趋势;贮藏期间鲜参总皂苷含量变化的一级动力学模型和Arrhenius方程具有较高的拟合 度(R2>0.94),可根据充氮包装人参在不同温度贮藏条件下的总皂苷含量变化对剩余货架期进行预测,经验证鲜 参的货架期预测模型的相对误差在10%以内 。  相似文献   

11.
以有氧冷藏大黄鱼为研究对象,建立了分别用于预测冷藏大黄鱼微生物学质量和剩余货架期的产H2S菌生长动力学模型和剩余货架期预测模型。产H2S菌在0℃、3℃、7℃、10℃的生长实验数据用于建立生长动力学模型表明,Gompertz方程能很好地描述产H2S菌在0~10℃温度区域的生长动态。最大菌数受贮藏温度的影响不大,在4种温度下平均值为(6.53±0.14)lgCFU/g。温度对最大比生长速率和延滞时间的影响,采用Belehradek方程描述均呈现良好的线性关系。又用5℃和8℃条件下贮藏大黄鱼来验证剩余货架期模型的准确性,得到货架期的预测值相比实测值的相对误差分别为-9.29%和-16.2%,显示建立的剩余货架期模型可以较快速实时地预测大黄鱼在0~10℃条件下有氧贮藏过程中的鲜度品质和剩余货架期。  相似文献   

12.
将鲜切西兰花减压处理36 h,减压参数为温度(0±0.5)℃,压力(1 000±50)Pa,湿度85%~95%,换气量100mL/min,分别置于0,5,10,15,20℃下贮藏,定期对假单胞菌进行检测。利用修正的Compertz方程构建不同温度下微生物生长的动力学模型,再结合Belehradek方程,讨论假单胞菌生长的μmax(最大比生长速率)和λ(延滞时间)与温度的关系,最终建立鲜切西兰花货架期预测模型,并对预测模型进行准确性评估。研究发现:修正的Compertz方程能较好地拟合不同温度下鲜切西兰花假单胞菌生长的S型曲线,R2均大于0.95。假单胞菌生长的Nmax(最大菌数)随着温度的变化波动不大,平均值为(8.3122±0.0651)lg(CFU/g)。μmax随着温度的上升而变大,λ随温度的增加而减小,结合Belehradek方程发现:在0~20℃范围,μmax0.5、(λ-1)0.5与温度T之间均存在良好的线性关系,R2分别为0.9933,0.9941。确定了Ns(最小腐败水平)并建立了减压处理鲜切西兰花的货架期预测模型SL,各参数为:Nmax=8.3122 lg(CFU/g),Ns=7.6990 lg(CFU/g),bμ=0.0263,Tminμ=-11.9810,bλ=0.0294,Tminλ=-24.4572。通过测定8℃贮藏温度下鲜切西兰花中假单胞菌的生长状态,验证货架期预测模型的准确性,结果表明:预测值和实测值的相对误差为-6.86%,说明该货架期预测模型SL可有效预测减压处理鲜切西兰花在0~20℃范围内任意温度下的货架期。  相似文献   

13.
以酸价和过氧化值为评价指标,研究不同贮藏温度和时间下核桃氧化酸败反应动力学过程,建立评价不同贮藏温度下核桃货架期的预测模型。结果表明,干燥处理后核桃贮藏期间酸价和过氧化值均随贮藏时间的延长而不断升高。变温滚筒催化红外—热风联合干燥处理的核桃酸价和过氧化值增幅最小,贮藏90 d后酸价为1.27 mg/g,过氧化值为0.019 9 g/100 g,其次是恒温滚筒催化红外—热风联合干燥核桃,最高的为单一热风干燥核桃,但均未超过国家规定标准,且品质良好。核桃的氧化酸败反应符合一级化学反应动力学模型。此外,分别以酸价和过氧化值建立了变温滚筒红外—热风联合干燥核桃的货架期预测模型,其R2>0.99,相对误差<9%,表明该预测模型在5~35 ℃内可较好地预测核桃的货架期。  相似文献   

14.
建立鲈鱼片在空气和真空包装条件下基于脂肪氧化指标的货架期预测模型。将鲈鱼片经空气和真空包装后分别置于微冻(-2 ℃)、冰温(0 ℃)和冷藏(4 ℃)下贮藏,测定各温度下鱼片的酸价(AV)、过氧化值(POV)和硫代巴比妥酸(TBA)值,并进行感官评价。结果表明:真空包装可以有效的延缓鱼片在贮藏期间脂肪的氧化,且腹部鱼片比背部氧化更显著。基于空气和真空包装条件下鱼片脂肪氧化指标建立的鲈鱼货架期预测模型具有较高的拟合精度,预测值和实测值之间的相对误差均在±10.60%以内,且真空包装组所建立的三个值的预测模型平均相对误差较小,但普通包装组所得的货架期模型平均相对误差也在允许的范围内,这表明该模型能够很好地预测鲈鱼的剩余货架期。本研究结果为不同包装方式下鲈鱼剩余货架期的预测提供了理论依据。  相似文献   

15.
为探究鹰爪虾在不同温度贮藏过程中的鲜度变化,实时监测物流期间的货架期,将鹰爪虾贮藏在-30,-18,0,4℃条件下,测定其K值、挥发性盐基氮(TVB-N)值与菌落总数(TVC),研究其货架期预测模型。结果表明:随着贮藏温度的降低,鹰爪虾的鲜度指标下降速率减慢,货架期延长,且不同温度组对鹰爪虾的鲜度指标有较大影响。采用Arrhenius方程构建贮藏温度、贮藏时间与K值、TVB-N值和菌落总数间的动力学模型,将其与食品TTT理论相结合,结果表明各项鲜度指标的拟合度较好(R~20.9),鹰爪虾的变温货架期预测模型对其剩余货架期的预测准确率较高,预测值与实测值的相对误差的绝对值不超过5%,说明基于鲜度指标建立的动力学模型可用于鹰爪虾变温冷链物流过程中剩余货架期的预测。  相似文献   

16.
以坛子肉半成品为试验材料,经2450MHz,12kW的微波设备在80℃进行杀菌3min后,探究不同贮藏温度(4℃,10℃,25℃,37℃)对贮藏期间坛子肉的感官品质、pH值、挥发性盐基氮、过氧化值、菌落总数的的影响及指标间的相关性,结合回归方程及方差分析构建货架期预测模型。结果表明:贮藏温度与感官品质、挥发性盐基氮、过氧化值、菌落总数相关性极显著;经温度和货架期预测回归方程求出在4℃,10℃,25℃和37℃下货架期分别为422.15d、374.43d、255.14d和159.70d,经验证预测货架期和实际货架期间相对误差为1.87-8.53%,该货架期预测模型效果优良。  相似文献   

17.
雷昊  谢晶  乔永祥 《食品与机械》2017,33(8):118-121,132
选取1.8 mg/L臭氧水清洗5 min的鲜切杭白菜为试验材料,分别贮藏在0,5,10,15,20℃的恒温箱中,通过测定不同温度下样品的菌落总数、VC、叶绿素含量等指标变化,结合Arrhenius方程建立不同的一级动力学预测模型,得到货架期模型的活化能(E_A)分别为49.08,54.87,38.80kJ/mol,指前因子(A_0)分别为4.93×10~7,1.00×10~9,1.22×10~6,最后用10℃的指标进行验证,得到的预测值和实测值相对误差均小于10%,表明该试验所得货架期模型能较为准确地预测0~20℃鲜切杭白菜的货架期。  相似文献   

18.
为更好监测不同货架温度对西兰花品质的影响,将西兰花分别放置于4、10、20 ℃下测定失重率、叶绿素、呼吸强度、乙烯释放量,并进行感官评价和特征指标动力学分析。结果表明,低温(4、10 ℃)可明显抑制西兰花货架期感官指标变化,延缓叶绿素下降速度,并推迟呼吸和乙烯峰值的出现时间。其中4 ℃保鲜效果最好,能有效延长货架期至21 d。应用Arrhenius方程与化学动力学反应,可拟合确定以叶绿素为变量的货架期预测模型(shelf life prediction model of chlorophyll, SLChlo)、失重率为变量的货架期预测模型(shelf life prediction model of weight loss, SLWL)。其中,SLChlo在低温条件下预测更准确,SLWL平均相对误差较小。二者结合可得到更准确的预测参数,进而为西兰花货架期监测提供理论基础。  相似文献   

19.
通过对不同贮运温度下速冻青稞鱼面的感官、理化指标的变化分析,分别建立基于感官威布尔危害分析(Weibull Hazard Analysis,WHA)、化学动力学(Arrhenius)、BP神经网络(Back Propagation)的货架期预测模型,并验证结果。研究结果表明:在-18℃~25℃范围内,面条货架期随温度的升高逐渐缩短;根据国家标准确定速冻青稞鱼面在-18℃、-10℃、-5℃、0℃、5℃、10℃、25℃温度下货架期实际终点分别为94d、195d、100d、30d、24d、18d、3d;相关性分析显示,贮藏时间与TBA值呈极显著正相关,与POV值、pH值、感官评分相关性不显著。在-18℃、-10℃、-5℃、0℃、5℃、10℃、25℃温度下,基于感官评价指标的威布尔危害分析的货架期预测终点为296.21d 、206.89d、101.94d、29.92d、23.46d、19.15d、3.29d ,相对误差为0.27%~9.67%;基于TBA指标的Arrhenius方程,货架期预测终点为413.30d 、170.87d、101.05d、60.92d、37.40d、23.36d、6.26d,相对误差为1.05% ~108.62%。基于感官评价和理化指标(PH、TVB-N、TBA、POV)的BP神经网络模型货架期预测终点为281.45d 、190.07d、103.24d、31.46d、23.20d、17.17d、2.76d ,相对误差为4.60~7.96%。Weibull与BP神经网络预测模型性能较优,可用于速冻青稞鱼面的货架期终点预测。  相似文献   

20.
基于颜色参数变化的青花菜叶绿素含量预测模型   总被引:4,自引:0,他引:4  
为研究青花菜贮藏期间叶绿素含量和颜色变化的关系,通过不同温度贮藏实验建立基于颜色参数-a/b值的叶绿素含量预测模型。将青花菜贮藏在273、278、283、293、303K条件下,测定花蕾-a/b值和叶绿素含量的变化。基于Arrhenius动力学方程分别建立青花菜-a/b值、叶绿素含量与贮藏时间和温度之间的动力学模型,再根据-a/b值与叶绿素含量变化的线性关系,进一步建立基于-a/b值的叶绿素含量预测模型。在275、280、285、295、305K贮藏温度条件下对基于-a/b值的叶绿素含量预测模型进行验证,预测的相对误差(RE)为4.31%,预测精度较高。因此该预测模型可以较好的预测在273~305K温度条件下青花菜叶绿素含量的变化状况,从而可为应用颜色参数的检测方法来检测青花菜的品质提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号