首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SiO2气凝胶具有高孔隙率、良好的吸附能力和表面易改性等优异特性,在污水和空气净化等领域具有极大的应用前景。近年来,城市温室效应加剧、空气质量下降,亟待开发新一代高效空气净化材料。从温室气体吸附和气相有毒化合物吸附两个应用背景出发,总结了SiO2气凝胶的吸附原理和改性工艺,概述了众多学者在该领域的研究成果,并对未来研究方向提出了展望。  相似文献   

2.
SiO2气凝胶微观结构中存在不同形状、大小和排列方式的孔隙,这些孔隙可以形成细小的通道、突起、凹陷等复杂形态,具有比表面积大、孔隙率高的特点。SiO2气凝胶被广泛应用于众多领域。因其低密度和高孔隙率性质被应用于吸声材料,低导热系数被广泛应用于保温材料,并且凭借其多孔性、高比表面积等结构特点,能够高效地吸附和去除污水中的有污染物,在污水处理方面也展现出良好的应用前景。本文综述了制备SiO2气凝胶四个阶段的研究进展,包括溶胶-凝胶法制备SiO2湿凝胶、SiO2凝胶的老化、表面改性SiO2气凝胶以及SiO2气凝胶的干燥,归纳了每个阶段的特点,重点介绍了SiO2气凝胶在含有机染料污水、含油污水和含重金属离子污水方面的吸附应用,并对其未来发展趋势进行了展望。  相似文献   

3.
张明 《复合材料学报》2020,37(11):2674-2683
SiO2气凝胶是一种含有纳米介孔结构的轻质固体材料,具有高孔隙率、高比表面积、低导热性、低介电性等特性,在隔热、吸附、吸声、发光、催化、电子等工业领域具有广阔的应用前景。但SiO2气凝胶自身孔结构存在易碎、易坍塌等缺陷,导致应用受到较大限制。在保持SiO2气凝胶良好特性的前提下,对其进行增强改性制备力学性能优良的SiO2气凝胶复合材料是近年来的研究热点。本文报道了无机/有机纤维增强改性SiO2气凝胶、有机聚合物增强改性SiO2气凝胶及无机物掺杂增强改性SiO2气凝胶等复合材料的主要制备工艺过程、材料综合性能表现及增强改性机制,探讨了增强改性SiO2气凝胶复合材料研究进展及重点方向,以期为增强改性SiO2气凝胶复合材料的研究和应用提供新的设计思路。   相似文献   

4.
王馨博  栾志强  李凯  栗丽  唐腾飞 《材料导报》2018,32(13):2214-2222, 2240
气凝胶(Aerogels)是一种以空气为介质的轻质多孔性凝聚态物质,由胶体粒子或高聚物分子相互聚集构成独特的纳米多孔三维网络结构。气凝胶的颗粒相和孔隙尺寸均为纳米量级,具有相当高的比表面积和孔隙率、可调控的开放孔隙结构、易于化学修饰的表面以及多样化的种类和形态,其气体吸附量可比同等条件下活性炭吸附量高两个数量级,因此在气体吸附净化领域逐渐受到人们的广泛关注。目前,气体吸附净化领域研究较多的气凝胶主要是SiO_2气凝胶和炭气凝胶。此外,近年来对金属氧化物气凝胶以及SiC气凝胶、石墨烯气凝胶、生物质基气凝胶等新型气凝胶的气体吸附应用也有相应的研究报道。吸附材料对目标气体需要同时具有较高的吸附容量和良好的选择性吸附能力。气凝胶的高比表面积和多孔性质提供了众多的吸附位点,但仅依靠自身物理吸附作用的吸附量有限,对目标气体的选择性不高,在实际吸附应用中,往往由于共存气体组分的竞争吸附影响对目标气体的吸附性能。因此,为了进一步提升气凝胶的吸附容量,提高对目标气体的选择性,研究人员围绕气凝胶修饰改性进行了大量的研究探索工作,并取得了一定的进展。目前,气凝胶吸附净化研究报道的目标气体主要是温室气体CO_2和大气中主要的污染物挥发性有机化合物(VOCs)。针对目标气体的不同可分别通过氨基功能化、氮掺杂等方法引入碱性位点或通过引入非极性官能团对气凝胶进行疏水改性,以提升气凝胶对CO_2或VOCs的吸附量和选择性。所采用的修饰改性方式主要有以下两种:一是在湿凝胶形成后或超临界干燥后通过嫁接、浸渍等手段对气凝胶表面进行功能化改性,通过引入特定的官能团或活性组分提升气凝胶对目标气体的吸附量和选择性;另一种是在溶胶-凝胶反应过程中引入功能化前驱体,在分子或纳米尺度上赋予气凝胶网络特定的性能,进而有效平衡活性组分稳定性和对目标气体的吸附性能。此外,对于炭气凝胶,还可通过活化进一步增大比表面积,改善孔隙结构和表面化学性质,从而实现对目标气体污染物吸附性能的优化。本文归纳了各类气凝胶在CO_2与VOCs吸附净化方面的研究进展,介绍了气凝胶的制备过程和结构特点,讨论并对比了不同气凝胶对目标气体的吸附性能与吸附机理,总结了当前气体吸附净化研究中对气凝胶进行修饰改性的主要方法,最后指出提高气凝胶的结构稳定性和吸附速率、设计可同时吸附多种目标气体的气凝胶、缩短制备周期并降低成本是未来研究工作的重点。  相似文献   

5.
张明 《化工新型材料》2023,(10):135-138+144
以正硅酸乙酯和甲基三乙氧基硅烷为共聚硅源,加入干燥控制化学添加剂N,N-二甲基甲酰胺,酸催化制备硅溶胶,并添加遮光剂SiC,混合均匀后在碱性条件下老化得到SiC掺杂改性双硅源体系SiO2溶胶,再利用疏水改性、溶剂交换等后处理工艺,常压干燥得到SiC掺杂改性SiO2气凝胶。考察了双硅源体系SiO2气凝胶的组织性能、表面形貌、物质构成和孔结构等,进一步分析了不同SiC掺杂量和温度条件对SiO2气凝胶隔热性能的影响。结果表明,SiC掺杂改性双硅源体系SiO2气凝胶的导热系数在700℃条件下可低至0.0482W/(m·K),且具有良好的高温隔热性能。  相似文献   

6.
以AlCl3·6H2O为前驱体,采用离子交换工艺和溶胶-凝胶法,在正硅酸四乙酯(TEOS)乙醇溶液中浸泡实现Al2O3和SiO2的复合,经表面改性和常温常压干燥制备出低成本、无杂质离子、低热导率的Al2O3-SiO2复合气凝胶。探索了不同有机硅烷改性剂对Al2O3-SiO2复合气凝胶结构和隔热性能的影响。结果表明,在改性剂为三甲氧基甲基硅烷(MTMS),改性环境为中性(pH为7)时,Al2O3-SiO2复合气凝胶表现出最均匀的微观结构,SiO2和Al2O3主要以无定形形式存在。MTMS可有效减少Al2O3-SiO2湿凝胶表面的-OH基团,形成Si-O-Si和Al-O-Si基团。Al2O3-SiO2气凝胶比表面积和孔体积分别达到574 m2/g和2.3 cm3/g,热导率低至0.029 W(m·K)-1。以上研究为促进气凝胶材料在隔热领域的应用提供了支持。   相似文献   

7.
目的应用SiO2气凝胶疏水隔热水性涂料对瓦楞纸板表面进行改性,探究其对瓦楞纸板力学性能、疏水性能、隔热性能的影响。方法通过机械共混和表面改性相结合的方式制备疏水隔热水性涂料,采用线棒涂布器涂布于瓦楞纸板表面,通过测试纸板表面的接触角检验疏水效果,并测试改性后纸板的边压强度、平压强度、戳穿强度和压痕强度;制备90 mm×90 mm×100 mm的隔热包装箱,通过融冰试验测试其隔热效果。结果经SiO2气凝胶疏水隔热水性涂料改性后的纸板接触角为91.75°,提高了6.25°。改性后纸板的横向边压强度、平压强度、戳穿强度和纵向压痕强度分别提高了5.6%,0.6%,2.4%和2.7%。当SiO2气凝胶的质量分数为2%时,改性后的纸板具有最优的隔热性能。当湿膜厚度为60μm时,与未涂布的原瓦楞纸板相比,温度可降低13.6℃结论该方法扩大了SiO2气凝胶在包装行业的应用范围,能为未来保温包装材料提供参考。  相似文献   

8.
朱国庆 《功能材料》2023,(4):4093-4098
气凝胶材料凭借孔隙率高、抗压能力强和热导率低等优势,在建筑保温材料市场中具有广阔的应用前景。选择正硅酸乙酯和仲丁醇铝为原料,通过溶胶-凝胶法制备了不同SiO2掺杂量的Al2O3-SiO2气凝胶复合保温材料。研究了SiO2掺杂量对复合气凝胶晶体结构、微观形貌、力学性能和导热性能的影响。结果表明,Al2O3-SiO2气凝胶主要由多晶态的勃姆石组成,SiO2的掺杂抑制了γ-Al2O3相的生成,阻碍了羟基缩水反应的发生,且AlO-H基团中的H被Si取代,形成了更为稳定的Al-O-Si键。Al2O3-SiO2气凝胶呈现出开放的多孔结构,SiO2的掺杂改善了气凝胶的孔道走向,使孔径尺寸减小且均匀分布。随着SiO2掺杂量的增加,Al2  相似文献   

9.
冯满 《功能材料》2022,53(5):5213-5217
以正硅酸乙酯(TEOS)为前驱体,无水乙醇和去离子水为溶剂,采用溶胶-凝胶法制备了SiO2气凝胶,再以不同含量(0,1%,3%和5%(质量分数))短切碳纤维为增强材料,在胶凝完成后,经过表面改性,采用常压干燥工艺,制备了碳纤维增强SiO2气凝胶复合材料。采用XRD、SEM、FT-IR和孔径测试等方法对制备所得复合材料的微观结构、形貌、孔径分布和导热性能进行了测试分析。结果表明,碳纤维增强SiO2气凝胶复合材料为典型的非晶态结构,属于毛细凝聚特征的介孔材料,碳纤维的掺杂并没有改变SiO2气凝胶的晶态结构;未掺杂碳纤维的SiO2气凝胶的颗粒相互堆搭,掺入碳纤维的SiO2气凝胶颗粒的孔隙明显减小,孔洞结构较为完整,碳纤维的掺入填充了大尺寸孔隙,有助于气凝胶孔径分布区间的收窄,当碳纤维的含量为3%(质量分数)时,颗粒分布最佳;随着碳纤维含量的增加,复合材料的导热系数呈现出先降低后升高的趋势,当碳纤维的含量为3%(质量分数)时,样品的导热系数最低为0.019 W/(...  相似文献   

10.
为得到轻便的高吸湿材料,制备席夫碱(Schiff)复合涂层对基体材料亲水改性以提高吸湿性能。利用戊二醛(GA)作为中间体共价连接氨基化纳米二氧化硅(SiO2)和亲水物质2-[(2-氨基乙基)氨基]乙磺酸钠(AAS)制得席夫碱复合材料(SiO2-NH2-GA-AAS),将其分散在壳聚糖(CS)溶液中制得SiO2-NH2-GA-AAS/CS复合涂层。以高分子材料聚对苯二甲酸乙二酯醇(PET)作为基材,采用浸渍的方法将复合涂层涂覆在其表面进行改性。采用FTIR、场发射扫描电子显微镜配备能谱仪(FESEM-EDS)和接触角测量仪对涂覆复合涂层后的PET基材的微观形貌、元素分布及表面润湿性进行表征分析,并对吸附过程进行伪一级、伪二级动力学模型拟合。结果表明:当SiO2-NH2/AAS质量比为1∶2,SiO2-NH2-GA-AAS用量为10wt%时,改性后的PET基材吸湿性能最佳。FESEM-EDS显示...  相似文献   

11.
采用化学交联、溶胶-凝胶和表面改性的方法,制得疏水性聚酰亚胺(PI)增强SiO2气凝胶复合材料。以均苯四甲酸二酐(PMDA)和4’,4’-二氨基二苯醚(ODA)为聚合单体,3-氨丙基-三己氧基硅烷(APTES)为封端剂,合成APTES封端的聚酰亚胺,与正硅酸乙酯(TEOS)混合形成前驱体。采用酸碱两步催化凝胶、湿凝胶依次进行表面疏水改性、溶液置换及CO2超临界干燥,得到聚酰亚胺增强SiO2气凝胶复合材料样品。利用FTIR、SEM、比表面积测试仪、万能材料试验机、接触角分析仪等表征样品的化学组成、微观形貌、孔结构、力学性能及疏水性能等。结果表明:PI质量分数为6wt%的样品密度为0.124 g/cm3,比表面积为724 m2/g,平均孔径尺寸为14 nm,接触角为134°,抗压强度为0.295 MPa。20wt%含量的PI增强SiO2气凝胶样品抗压强度为0.556 MPa。  相似文献   

12.
为克服SiO2气凝胶强度低、易破碎等缺点,通过原位溶胶-凝胶法制备纳米纤维素(CNF)增强SiO2气凝胶,并对SiO2气凝胶的化学结构、微观形貌和力学、物理性能进行表征分析,探讨了CNF对SiO2气凝胶力学性能的增强机制。结果表明:CNF独特的纳米级网络结构可增强SiO2颗粒之间的联结强度;Si-OH(960 cm-1)和Si-O-Si(1 225 cm-1、1 056 cm-1和800 cm-1)等特征吸收峰的出现表明,CNF与SiO2之间形成稳定的化学键联结;采用不同含量CNF气凝胶作为SiO2增强相均可达到增强力学性能的效果,同时仍能保持SiO2气凝胶本身质轻、高孔隙率、高比表面积等特性;当以CNF质量分数为6wt%的溶液制备气凝胶时,CNF增强SiO2气凝胶具有最优的力学性能,压缩模量和压缩强度分别为12.43 MPa和2.59 MPa。  相似文献   

13.
二氧化硅气凝胶以其低密度、高孔隙率等特性在高温隔热领域显示出广阔的应用前景, 但其脆性和高成本的超临界干燥方式限制了其应用。本研究以乙烯基三甲氧基硅烷(VTMS)和乙烯基甲基二甲氧基硅烷(VMDMS)为前驱体, 通过溶胶凝胶、常压干燥制备了具有高柔性的海绵状有机硅气凝胶, 并研究了前驱体摩尔比对气凝胶微观结构和压缩回弹性能的影响, 以及气凝胶分别在高温有氧和无氧环境中的无机化转变过程。结果表明, 随着前驱体中VTMS/VMDMS比例增加, 气凝胶颗粒变小且堆积更紧密, 其压缩回弹性能也随之降低; 在800 ℃空气氛围中, 气凝胶通过侧基的氧化和主链Si-O-Si的断裂、重排转化为无机SiO2; 在800 ℃ N2氛围中, 气凝胶通过裂解反应转化为无机SiO2和游离碳的混合体, 1000~1400 ℃进一步处理后SiO2和游离碳经碳热还原反应生成SiO4、SiCO3、SiC2O2和SiC3O等无定形的Si-O-C结构和少量β-SiC纳米线; 经1200 ℃碳热还原反应生成的Si-O-C结构具有最优的耐高温氧化性能, 可为制备耐高温氧化Si-O-C气凝胶提供参考。  相似文献   

14.
具有气凝胶结构特征的C/SiO2和C/SiC复合材料因其多样的结构存在形式和多孔、轻质、耐高温等特性, 在高温隔热、吸附、催化、储氢、光电等多种领域具有广泛的应用前景和研究价值。依据硅源与碳源的不同引入方式, 本文综述了采用共聚法、浸入法和聚合物先驱体热解法制备的具有气凝胶结构特征的C/SiO2和C/SiC复合材料的研究现状。借助碳材料与SiO2两者间的相对存在形式, 探讨了这三种工艺方法制备C/SiO2和C/SiC复合材料的工艺特点, 分析了材料所呈现的组织结构特征、合成机理和性能特点, 并对其潜在的应用前景进行了展望。硅与碳之间多样的复合方式使C/SiO2和C/SiC复合材料呈现出多样的材料特征和特性, 为相关研究开辟了新的方向。  相似文献   

15.
以棉短绒为原料,马来酸酐(MA)、双氧水接枝改性,制备了棉短绒基气凝胶,然后与纳米Fe3O4复合、碳化,合成了MA接枝棉短绒基气凝胶/Fe3O4磁性复合碳材料(MFCA-C)。通过扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、X射线光电子能谱仪、热重分析仪、磁强计、比表面积及孔隙度分析仪对样品进行表征分析。以刚果红(CR)为模型污染物进行了吸附实验。结果表明,MFCA-C具有三维网状结构,比表面积为105m2/g,孔径介于2~50nm之间。吸附过程符合准二级动力学模型和Langmuir等温吸附模型。经过5次循环吸附,MFCA-C对CR的吸附率仍然达到了93.0%。  相似文献   

16.
以正硅酸乙酯为前驱体,玻璃纤维和碳纤维为增强相,通过溶胶-凝胶和常压干燥分别制备了玻璃纤维增强型二氧化硅气凝胶(GF/SiO2气凝胶)和碳纤维增强型二氧化硅气凝胶(CF/SiO2气凝胶)复合材料,通过扫描电子显微镜、傅里叶红外光谱、比表面积和孔径分布测试仪、万能力学试验机、导热系数测试仪等手段对材料的结构和性能进行了测试表征,对比分析了玻璃纤维和碳纤维对SiO2气凝胶复合材料结构与性能的影响。结果表明:玻璃纤维与SiO2颗粒基体之间的界面结合较差,制得的GF/SiO2气凝胶具有较差的力学性能(压缩强度=0.676MPa,应变=60%)和较高的导热系数[0.0410W/(m·K)];而碳纤维与SiO2气凝胶颗粒具有较好的界面相互作用,制得的CF/SiO2气凝胶具有良好的力学性能(压缩强度=1.225MPa,应变=60%)和低的导热系数[0.0342W/(m·K)]。  相似文献   

17.
从滤料表面改性的角度对提高滤料在高湿环境中运行的稳定性进行研究。以聚对苯二甲酸乙二醇酯(PET)滤料为基材、正硅酸乙酯(TEOS)为前驱体、甲基三乙氧基硅烷(MTES)为低表面能物质,采用溶胶-凝胶法,在滤料表面原位生成SiO2纳米粒子,制备改性SiO2凝胶涂层滤料。采用FESEM- EDS、FTIR和接触角测量仪分析了PET滤料表面化学成分、润湿性能及表面形貌的变化。结果表明:整理后PET滤料表面生成SiO2纳米粒子,经MTES改性处理后滤料表面布满疏水的甲基基团,滤料疏水性能显著提高,其表面水接触角达154.11°。SiO2颗粒在滤料表面均匀分布,凝胶聚合物仅在纤维交叉处沉积,使滤料透气性得以保证,过滤效率由97.0595%增加到99.2028%,过滤品质因数由0.02124增加到0.02761,提升了30%。   相似文献   

18.
刘双  张洋  张天蒙  江华  姚远 《复合材料学报》2018,35(11):3180-3188
选用3-(2-氨基乙氨基)丙基甲基二甲氧基硅烷(AEAPMDS)对球形纤维素纳米纤维(CNF)湿凝胶进行化学修饰,探讨了改性反应条件对氨基纳米纤维素中N含量的影响,选用叔丁醇溶液为置换溶剂,采用冷冻干燥制备了一种新型的生物质气凝胶。对所制备的3-(2-氨基乙氨基)丙基甲基二甲氧基硅烷-纤维素纳米纤维(AEAPMDS-CNF)气凝胶的微观形貌、结构特征、力学强度及CO2的吸附等性能进行表征和分析。结果表明:反应时间为10 h、反应温度为90℃、AEAPMDS溶液的质量分数为12wt%时,是AEAPMDS-CNF气凝胶的最佳制备方案。改性后的纤维素气凝胶具有三维网络孔结构、质轻(ρ ≤ 0.0573 g·cm-3)、高孔隙率(ε>90%)等特点,其压缩强度为0.46 MPa,CO2吸附量高达1.54 mmol·g-1,表现出优异的CO2吸附性能,具有很大的应用前景。  相似文献   

19.
溶胶-凝胶法制备的二氧化硅增透膜因具有极低的折射率与较高的激光损伤阈值而被广泛应用于高功率激光系统中。但是, 激光系统工作环境中的水汽及挥发性有机污染物极易污染薄膜。本研究以正硅酸四乙酯为前驱体, 氨水为催化剂, 乙醇为溶剂制备了碱性催化的单分散SiO2溶胶。采用提拉法在BK7玻璃基板表面镀制了SiO2薄膜, 并对薄膜进行氨水气氛以及HTMS气氛联合处理改性。改性后的薄膜表现出了极佳的耐环境稳定性, 在高湿环境下放置2个月后膜层峰值透过率仅下降0.03%, 在低真空二甲基硅油污染环境下放置2个月后透过率光谱几乎无变化。NH3/HTMS气相法联合处理可以有效延长SiO2增透膜在高功率激光系统中的工作寿命。  相似文献   

20.
富锂锰基材料(LMNC)由于电压平台高、比容量高,在锂电池材料研究中受到广泛关注。针对LMNC材料在首次充放电过程中不可逆容量损失较大、倍率性能差等问题,运用包覆改性方法改善材料性能。首先采用溶胶-凝胶法制备LMNC富锂锰基材料,采用Nb2O5、SiO2、钛酸锂进行包覆改性,并通过激光粒度测试仪、XRD、SEM等方法对材料的宏观形貌和微观结构进行测试表征。结果发现,Nb2O5、SiO2包覆改性使材料性能变差,钛酸锂包覆改性后材料的放电比容量提升了10~20mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号