首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 225 毫秒
1.
横观各向同性土——半封闭隧道衬砌相互作用分析   总被引:1,自引:0,他引:1  
土体在沉积过程中存在各向异性,将土体视为各向异性体更为合理。考虑土体和衬砌的相互作用,基于饱和多孔介质理论和弹性理论,在频率域内研究了简谐荷载作用下横观各向同性土——半封闭圆形隧道衬砌简谐耦合振动。通过衬砌内边界应力连续以及土体和衬砌界面处应力和位移协调,得到了饱和横观各向同性土和衬砌的位移、应力和孔压解析表达式。利用衬砌中流体速度和土体中流体速度相等,建立了隧道部分透水边界条件,得到了待定系数的具体表达式。数值算例分析了土体和衬砌物性和几何参数的影响,表明:横观各向同性面内的弹性模量对系统动力响应影响较大,而垂直于各向同性面内的弹性模量对系统动力响应影响较小。另外,相对渗透系数和衬砌厚度对响应幅值有很大影响,而衬砌泊松比对响应幅值影响较小。  相似文献   

2.
内源爆炸荷载作用下隧道的动力响应,经常被简化为以爆源为中心的二维平面应变问题,其实际上是一个三维岩土工程问题。为评价隧道爆源及周围区域的爆炸破坏,采用Laplace和Fourier变换,提出一种在内源爆炸荷载作用下,饱和土体中圆形衬砌隧道的瞬态响应精确解答。基于Biot波动理论,将周围土体和衬砌结构分别看成饱和两相介质和弹性介质,推求了Laplace和Fourier变换域内爆炸荷载作用下衬砌和周围饱和土体的动力响应解析解。利用Laplace和Fourier反变换的数值方法,进行了爆炸荷载作用下衬砌和周围土体的动力响应数值分析。结果表明:与简化的二维平面应变模型相比,基于三维模型得到的切向应力、径向位移和孔隙水压力较小;隧道的动力响应随时间而迅速减小,并随着与爆源距离的增加,而在径向和轴向上呈指数衰减。  相似文献   

3.
基于Hamilton理论-弹性波动理论,采用解析法研究了局部集中瞬态脉冲荷载下半空间隧道的动力响应。衬砌采用Hamilton壳体理论模拟,土体采用弹性介质动力学理论模拟,通过波函数展开法、Graf坐标转换法和Laplace变换法及其数值逆变换,求解了半空间中隧道瞬态集中荷载响应的半解析解。通过MATLAB数值计算,分析了隧道不同位置衬砌刚度、土体波速、衬砌环向角度的波动特性。结果表明:隧道环向各位置处位移与应力幅值随埋深增加而减小,环向应力和径向位移曲线波动趋势相似,在各角度上的响应幅值各不相同,由于地表存在,隧道顶部响应大于其他各位置;衬砌外表面的位移与应力随土体波数增加而减小,同时隧道位置的改变对土体波数变化影响较大,以隧道顶部响应最为显著;当衬砌刚度增大时,其环向各位置响应衰减幅度不同,其中隧道底部位置处的幅值衰减最大。  相似文献   

4.
考虑耦合质量项的影响,对饱和地基中圆柱形衬砌结构的瞬态响应问题进行了研究。基于Biot波动理论,将饱和土体和衬砌结构分别视为流固耦合两相介质和弹性均匀介质,对波动方程进行Laplace变换和变量分离,求得了饱和地基中均布突加荷载作用下,衬砌结构的动力响应解答。利用土体与衬砌结构之间的连续性条件和衬砌结构内边界上的边界条件,确定表达式的未知系数。采用Laplace逆变换的数值积分法,给出相应的数值解,分析了饱和土参数、衬砌结构参数对衬砌结构的动力响应的影响。文中还分析了耦合质量对衬砌结构动力响应的影响。  相似文献   

5.
考虑介质和流体的压缩性,根据Biot理论和弹性壳体理论,在频率域内研究了饱和分数导数粘弹性土体-半封闭圆形隧道壳体衬砌系统耦合振动。将土体视为液固饱和多孔介质,选择反映介质流变特性的分数导数模型描述土骨架的应力-位移本构关系,又引入部分透水的边界条件,得到了饱和粘弹性土体中半封闭隧洞内边界分别在轴对称荷载和流体压力作用下位移、应力和孔压的表达式。进行了参数分析,研究表明:轴对称荷载条件下,分数导数阶数对系统响应的影响远大于流体压力情形下的动力响应,且存在明显的共振效应,但流体压力条件下不产生共振现象。  相似文献   

6.
采用解析法研究了移动简谐荷载作用下饱和土全空间中圆形衬砌隧道和轨道结构的动力响应,用无限长圆柱壳模拟衬砌,用Biot饱和多孔介质理论模拟土体,用Euler梁理论模拟钢轨、浮置板并组成周期性的两层叠合梁单元,结合轨道与衬砌仰拱处的力和位移连续条件,实现轨道结构与衬砌及周围饱和土体的耦合。通过算例分析了荷载移动速度、自振频率对轨道结构位移、饱和土体位移及孔压的影响,对比了连续浮置板轨道和离散浮置板轨道的动力特性。结果表明:离散浮置板轨道情形下,轨道结构和饱和土体响应频谱中存在由荷载周期通过不连续浮置板而引发的参数激励;荷载自振频率接近轨道结构固有频率时产生共振,对轨道结构和饱和土位移、孔压响应均有较大影响;离散浮置板轨道和连续浮置板轨道动力特性有显著差异,当荷载频率接近有限长浮置板形成驻波的频率时,二者对应的自由场响应区别明显;增大衬砌厚度可以显著减小饱和土位移响应。  相似文献   

7.
具有黏弹性衬砌的深埋圆形隧洞饱和土动力响应   总被引:1,自引:0,他引:1  
 由于混凝土衬砌具有黏弹性性质,以往的弹性曲梁、弹性壳体等理论都难以描述其蠕变的全过程。将土体和混凝土衬砌分别视为饱和多孔黏弹性介质和具有分数阶导数本构的黏弹性体,在频率域内研究饱和黏弹性土和分数导数型黏弹性衬砌系统耦合振动特性。根据Biot理论和黏弹性理论,通过位移势函数,分别得到简谐荷载作用下饱和土和衬砌的位移、应力和孔压解析通解,并通过衬砌内边界以及饱和土和衬砌接触面处的应力和位移协调条件,给出待定系数的具体表达式。考察饱和土和衬砌各物性和几何参数对系统动力特性的影响,研究表明:饱和黏弹性土和分数导数型黏弹性衬砌系统的动力特性与饱和黏弹性土和经典黏弹性衬砌系统的动力特性存在较大差异。另外,随着土骨架阻尼比的增加,响应幅值逐渐减小。  相似文献   

8.
《地下空间与工程学报》2021,17(z1):157-173,195
以南昌地铁区域饱和含泥砂土为研究对象,做了砂土比重试验、颗粒筛分试验和砂的相对密度试验,并在PFC3D颗粒流程序中建立柔性边界面常规三轴和动三轴的数值试验模型。将常规三轴、动三轴的室内试验结果、PFC3D模拟结果和理论计算结果作对比,结果表明,饱和含泥砂土在常规三轴排水条件下的体应变状态、应力应变关系与室内试验和理论计算结果基本符合,在常规动三轴排水条件下同振幅、频率和围压作用下饱和含泥砂土的含泥量越大则应变发展速度越快,孔隙水压力的幅值和相对值也越大。基于数值实验和南昌地铁所建立的单、双隧道模型结果表明,在单隧道运营时,由于列车经过隧道会使隧道产生向下且逐渐稳定波动的位移,同时导致隧道周围土体产生向下的位移、旋涡式的速度和稳定的应力波动;隧道拱顶上土体的位移汇聚向下,拱底下土体的位移扩散向下,速度的旋涡以隧道为中心扩散,土体应力响应则随与隧道的距离增加而减小,且拱顶和拱底的应力响应最大,砂土含泥量与隧道位移和土体应力响应呈正相关。在双隧道模型运营时,其隧道的振动、土体的位移、速度和应力响应与单隧道运行结果大致相同,只是隧道下部的土体在两个振源的作用下应力响应和位移会有叠加效应,两隧道中间的土体则相反会产生相互制约的效果。  相似文献   

9.
在柱面SH波作用下,分析具有圆形隧洞的场地的动力响应。基于弹性波动理论,采用数学模型,分析含圆形隧洞的弹性半空间中的弹性波的散射问题,得到圆形隧洞附近场地的位移的解析解,并对解答的正确性进行验证。通过对圆形隧洞的埋深、半径和衬砌刚度等参数进行分析,研究圆形隧洞周围土体的位移幅值沿深度的变化情况。结果表明,圆形隧洞的存在对附近场地的动力响应行为有着显著的影响;圆形隧洞周围土体的位移幅值与圆形隧洞的物理力学参数有着密切的关系;随着圆形隧洞的衬砌刚度和埋深的减小,圆形隧洞周围土体的位移幅值逐渐增大;随着圆形隧洞半径的增大,周围土体的位移幅值随之增大。  相似文献   

10.
高华喜  闻敏杰 《岩土工程学报》2012,34(10):1819-1826
基于Biot理论,在频率域内研究了黏弹性分数导数型饱和土中球形空腔的动力响应。利用分数阶导数黏弹性模型描述土骨架的应力–应变本构关系,并采用与土体孔隙率有关的应力系数合理地确定了衬砌和孔隙水分别承担的内水压力值。通过土体和衬砌接触面处的连续性边界条件,得到了内水压力作用下黏弹性分数导数型饱和土体中球形空腔的稳态动力响应。考察了物性参数对响应幅值的影响,研究表明:土体黏性和材料特性以及多孔柔性衬砌和饱和土的相对渗透性,对系统响应有较大的影响。  相似文献   

11.
The dynamic responses of a lined tunnel subjected to dynamic loading is one of the key issues that needs to be addressed prior to the design and construction of tunnels. While the tunnel lining and surrounding soil are commonly designed in ideal explosion-proof engineering as ideal elastic media to simplify the problem, in reality; soils are porous geo-materials. Therefore, the concern is whether this practice is more conservative or close to the reality, in contrast to the scenario where the surrounding soil is assumed as a saturated porous medium. This study investigates the differences and relationships between the dynamic responses of the lining structures in two immensely disparate media: ideal elastic medium and porous saturated medium. Firstly, to avoid the complexity of 3D numerical studies, 3D analytical solutions for the responses of the lined tunnel in both the ideal elastic medium and porous medium due to internal dynamic loading are derived using Fourier and Laplace transforms. Also, the differences between the dynamic responses (e.g., the radial displacement, radial effective stress, and hoop effective stress) of the lining structures in two media are determined to assess the rationality of assuming that the soil around the lined tunnel is an infinite elastic compressible medium. Finally, the influence of the porosity on the dynamic response of a cylindrical lined tunnel subjected to dynamic loads is examined.  相似文献   

12.
横观各向同性土中深埋圆形隧道的应力和位移分析   总被引:4,自引:0,他引:4       下载免费PDF全文
基于Biot固结理论,得到在横观各向同性饱和土体中开挖圆形隧道引起的应力、位移及孔隙水压力在时间的拉普拉斯变换域中的解。运用拉普拉斯数值逆变换,得到数值计算结果,分析了隧道边界条件和土体的横观各向同性性质对应力、位移场的变化及孔隙水压力消散的影响。  相似文献   

13.
The support of underground structures must be designed to withstand static overburden loads as well as seismic loads. New analytical solutions for a deep tunnel in a saturated poroelastic ground have been obtained for static and seismic loading. The static solution accounts for drainage and no-drainage conditions at the ground–liner interface. Linear elasticity of the liner and ground, and plane strain conditions at any cross-section of the tunnel are assumed. For tunnels in which ground stresses and pore pressures are applied far from the tunnel center, the drainage conditions at the ground–liner interface do not affect the stresses in the liner. The analytical solution shows that the stresses in the liner are exactly the same whether there is drainage or not at the ground–liner interface. Hence, if the drainage conditions in the tunnel are changed from full drainage to no-drainage or vice versa the stresses in the liner are not affected. However, the stresses and displacements in the ground change significantly from drainage to no-drainage conditions. For seismic loading a new analytical formulation is presented which provides the complete solution for the ground and the liner system for both dry and saturated ground conditions. The formulation is based on quasi-static seismic loading and elastic ground response; for a saturated ground, undrained conditions are assumed which indicate that the excess pore pressures generated during the seismic event do not dissipate. The results show that the racking deformations of a liner in dry or saturated ground are highly dependent on the flexibility of the liner.  相似文献   

14.
This paper revisits the classical problem of excavating a deep cylindrical tunnel in a saturated elastic or elasto-plastic porous ground that obeys Terzaghi's effective stress principle. A generalized form of the classical two-dimensional analytical solution by Lamé for the problem of excavating a cylindrical tunnel in elastic medium subject to axi-symmetric loading is presented. The solution considers the long-term (i.e., post-transient) mechanical effect of changes in pore pressure due to drainage of the ground around the opening on the mechanical response of the tunnel. The proposed solution together with the analytical solution for axi-symmetric loading of an annular ring representing a liner are used to explain the fundamental differences in support loading obtained for various hydro-mechanical conditions. These conditions involve excavating the tunnel with a permeable liner, with and without removal of water from the tunnel, excavating the tunnel with an impermeable liner, with subsequent drainage of water in the ground around the tunnel, etc. The results obtained with the analytical solution are compared with results obtained with the hydro-mechanical option in a commercial finite difference code. The finite difference approach is also used to obtain results and explain the behavior of the tunnel under different hydro-mechanical conditions when the ground is assumed to behave elasto-plastically.  相似文献   

15.
盾构隧道施工引起的环境土工效应分析一直是隧道及地下建筑工程领域中研究的热点问题。由于目前该领域较少考虑饱和土质以及隧道衬砌与土体间界面排水工况所带来的影响,尤其是较少针对隧道施工长期变形影响以及衬砌应力进行解析分析。由此基于隧道开挖椭圆化变形模式,考虑衬砌界面完全排水以及完全不排水两种工况,提出了饱和土中浅埋隧道开挖引起的地层长短期变形和隧道衬砌应力计算方法。结果表明:椭圆化变形模式对地层短期变形和长期变形的影响均较明显,在此条件下得到的位移曲线与实测值吻合较好。在计算衬砌内力时,衬砌轴力和弯矩整体关于90°/270°轴即隧道竖轴线严格对称,其中轴力沿圆周呈上大圆下小圆的倒“8”字形分布;而弯矩沿圆周呈上下圆基本一致的“8”字形分布,其中下圆稍大。土质和界面排水条件显著影响衬砌内力值的大小,其中饱和土长期排水工况下衬砌内力值一般大于不排水工况解,且其与饱和土短期不排水解相比差距明显。分析成果可为正确预估饱和土浅埋盾构开挖变形提供一定的理论依据。  相似文献   

16.
内源爆炸荷载产生的振动响应对地下衬砌隧洞的安全非常重要。采用Fourier变换和Laplace变换,推导出内源爆炸荷载作用下无限弹性空间中圆柱形衬砌孔洞的瞬态动力响应无量纲解答,利用Fourier和Laplace逆变换数值方法,计算分析内爆炸荷载产生的振动在衬砌和周围弹性介质中的分布和传播衰减规律。计算结果表明,爆源中心处衬砌内表面径向位移、切向应力和衬砌外表面土体径向位移、切向应力最大,向左右两侧迅速衰减,在6倍衬砌内径处衰减为0;衬砌内表面径向位移、切向应力和衬砌外表面土体径向位移、切向应力时程曲线峰值爆源中心处最大,离爆源中心越远,峰值越小,且在t~*=10时衰减为0。  相似文献   

17.
 为研究地铁列车运行引起的轨道系统及饱和土体动力响应问题,建立了地铁列车–轨道结构–衬砌–饱和土体耦合分析模型,其中列车荷载用一系列符合列车几何尺寸的移动常荷载或移动简谐荷载模拟,轨道结构中的钢轨和浮置板简化为无限长弹性Euler梁。基于弹性理论和Biot多孔介质理论,采用2.5维有限元法分别模拟衬砌和饱和土体,结合轨道与衬砌仰拱处的力和位移连续条件,实现浮置板轨道系统与衬砌及周围饱和土体的耦合,并通过快速Fourier逆变换(IFFT)进行波数展开获得三维时域–空间域内的动力响应。研究结果表明,随着常荷载移动速度和移动简谐荷载自振频率的提高,地表振动水平显著增大;移动常荷载产生的地表响应最大值在荷载正上方,其空间衰减率保持恒定;移动简谐荷载产生的地基振动大于移动常荷载产生的地基振动,响应最大值在列车运行线路两侧一定范围内;在移动简谐荷载作用下,钢轨速度谱与地表速度谱分布在以简谐荷载自振频率为中心的一段范围内。  相似文献   

18.
An analytical solution is derived for dynamic response of long lined tunnels subjected to travelling loads. For the derivation, the long lined tunnel is assumed to be infinitely long with a uniform cross-section resting on a viscoelastic foundation. Fourier and Laplace transforms are utilized to simplify the governing equation of the tunnel to an algebraic equation, so that the solution can be conveniently obtained in the frequency domain. The convolution theorem is employed to convert the solution into the time domain. Final solutions of tunnel responses investigated are deflection, velocity, acceleration, bending moment, and shear force. The proposed solution is verified by providing comparisons between its results and those from the Finite Element program ABAQUS. Further parametric analysis, such as the influence of wave velocity and frequency on dynamic responses of the tunnel is presented with the analytical solution. These relationships can be an effective tool for practitioners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号