首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Germany, the concept of dry interim storage of spent fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently revised ‘Guidelines for dry interim storage of irradiated fuel assemblies and heat-generating radioactive waste in casks’ by the German Waste management Commission. For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties, which satisfy the proofs for the compliance of the safety objectives at that time. In recent years, the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependent system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report, including evaluation of long term behaviour of components and specific operating procedures of the package. The present research and knowledge concerning the long term behaviour of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behaviour of aged metal and elastomeric gaskets under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period. Assessment methods for the material compatibility, the behaviour of fuel assemblies and the aging behaviour of shielding parts are issues as well. This paper describes the state of the art technology in Germany, explains recent experience on transport preparation after interim storage and points out arising prospective challenges.  相似文献   

2.
Abstract

The design assessment concerning the mechanical behaviour of transport and storage casks for radioactive material to fulfil nuclear safety criteria has to be based on two essential considerations: (1) Effective analysis of the stress–strain state of the cask components under both normal operational and test conditions including hypothetical accident scenarios with suitable accepted methods. (2) Economic estimation of the required properties and the structural state of the cask components with sufficient exactness. In an overview of the codes which are available at GNS/GNB for cask impact strength analyses (ANSYS, ADINA, VDI Codes), procedures and aspects of benchmarking and validation of calculation codes are described. The results of experimental full size cask drop test programs (CASTOR, POLLUX) and corresponding pre-test calculational analyses show the suitability of the codes used. The influence of dynamic effects on the mechanical properties of material (ductile cast iron, wood) has been investigated experimentally. By consideration of these dynamic values in strength analyses of casks at impact a good agreement between experimental and calculational results has been achieved.  相似文献   

3.
Abstract

This paper presents technical details of the drop test performance as well as some experimental results of tests carried out with the Japanese 'Yoyushindo-Disposal' waste container for intermediate depth disposal. The drop test program comprised three single 8 m drop tests at the specimen's corner edge orientation onto a concrete slab. The slab was connected to the unyielding IAEA target of the BAM's 200 t drop test facility. The three tested specimens had masses between 20 000 and 28 000 kg depending on their content mass. The tests were accompanied by various metrology, such as strain and deceleration measurements, optical three-dimensional deformation methods, leak tightness testing and test installation for potential particle release measurements to collect a set of data for establishing a basis for safety assessment.  相似文献   

4.
Abstract

In the context of the research on the mechanical safety of packages for radioactive material, full scale drop tests with spent fuel and high activity waste transport and storage casks have been performed by the Federal Institute for Materials Research and Testing (BAM). The research reflects national and international interest in acquiring comparative knowledge of full and reduced scale model drop tests as well as in finite element calculations. This paper presents the experimental, analytical and first numerical results of the full scale drop test with the full scale CONSTOR® V/TC prototype, manufactured by GNS, Gesellschaft für Nuklear-Service mbH, Germany. The prototype was tested by BAM in a 9 m horizontal drop test onto the unyielding target of the BAM drop test facility in Horstwalde, Germany.  相似文献   

5.
Abstract

In the course of decommissioning of power plants in Germany large nuclear components (steam generator, reactor pressure vessel) must be transported over public traffic routes to interim storage facilities, where they are dismantled or stored temporarily. Since it concerns surface contaminated objects or low specific activity materials, a safety evaluation considering the IAEA transport regulations mainly for industrial packages (type IP-2) is necessary. For these types of industrial packages the requirements from normal transport conditions are to be covered for the mechanical proof. For example, a free drop of the package from a defined height, in dependence of its mass, onto an unyielding target, and a stacking test are required. Since physical drop tests are impossible generally due to the singularity of such 'packages', a calculation has to be performed, preferably by a complex numerical analysis. The assessment of the loads takes place on the basis of local stress distributions, also with consideration of radiation induced brittleness of the material and with consideration of recent scientific investigation results. Large nuclear components have typically been transported in an unpackaged manner, so that the external shell of the component provides the packaging wall. The investigation must consider the entire component including all penetration areas such as manholes or nozzles. According to the present IAEA regulations the drop position is to be examined, which causes the maximum damage to the package. In the case of a transport under special arrangement a drop only in an attitude representing the usual handling position (administratively controlled) is necessary. If dose rate values of the package are higher than maximum allowable values for a public transport, then it is necessary that additional shielding construction units are attached to the large component.  相似文献   

6.
A spent fuel storage cask is required to prove the safety of its canister under a hypothetical accidental drop condition which means that the canister is assumed to be free dropped on to a pad of the storage cask during the loading of the canister into a storage cask. In this paper, finite element analyses and verifying tests for a shock-absorbing effect of a pad in a spent fuel dry storage cask were carried out to improve the structural integrity of the canister under a hypothetical accidental drop condition. The pad of the storage cask was originally designed as cylindrical steel structure filled with concrete. The pad was modified by using the structure composed of steel and polyurethane-foam instead of the quarter of the upper concrete as an impact limiter. The effects of the shape and the thickness of the steel structure and the density of the polyurethane-foam which was used in between steel structures were studied. As the optimized pad of a spent fuel dry storage cask, the quarter of the upper concrete was replaced with 12 mm thick circular steel structure and polyurethane-foam whose density was 85 kg/m3. The drop tests of a 1/3 scale model for the canister on to the original pad and the optimized pad were conducted. The effect of the pad structure was evaluated from the drop tests. The optimized pad has a greater shock-absorbing effect than the original pad. In order to verify the analysis results, strains and accelerations in the time domain by the analytical methods were compared with those by a test. The numerical method of simulating the free drop test for a dry storage cask was verified and the numerical results were found to be reliable.  相似文献   

7.
Abstract

BAM safety related research of containers for radioactive material focuses on advanced mechanical safety assessment methods for verification of the structural integrity and leak tightness under normal conditions of transport and hypothetical accident conditions during transport and storage. An essentially unyielding target with a rigid surface is required for impact tests performed for package approval according to IAEA regulations. In addition to specification of a target, e.g. with a combined mass more than 10 times that of the specimen for drop tests, unyielding target characteristics have been investigated with various package designs and different impact tests. The unyielding target of the BAM drop test facility, a reinforced concrete block together with an embedded and anchored mild steel plate, provides relatively large mass and stiffness with respect to the packages being tested. For monitoring reasons accelerometers and strain gauges are embedded in the concrete block of the foundation at several positions. Additionally, dynamic impact responses like vibrations and rigid body motion can be measured by seismic accelerometers. The mechanical characterisation of the target's rigidity is based on experimental results from various drop tests. Test containers with weights of 181 000 kg, 127 000 kg and 8010 kg hit the target with velocities up to 13˙5 m s–1 in the horizontal and vertical drop positions. The rigidity of the impact target can be demonstrated with experimental results confirmed by analytical approaches. Some conclusions can be drawn about experimental testing as well as analytical calculations in order to compare impact effects.  相似文献   

8.
Abstract

Cask impacts without impact limiters onto unyielding targets result in totally different mechanical reactions from those of relatively smooth impacts using impact limiters. During the licensing procedure of the new GNS CASTOR HAW 28M design for vitrified high activity waste, BAM therefore decided to perform an additional drop test with a 1 : 2 scale test cask (CASTOR HAW/TB2). In spite of a small drop height of only 0˙3 m onto the unyielding target of the BAM drop test facility, which conservatively covers any storage building foundation, the impact caused considerable stresses to the cask structure with high stress and strain rates. This paper presents the evaluation strategy of BAM including the drop test results and the development and qualification of appropriate finite element modelling to achieve sufficient agreement between test and calculation results. Further steps include mechanical analyses of reduced and full scale cask designs to determine the most critically stressed areas of the structure, verify scaling factors and demonstrate safety with respect to cask integrity and tightness.  相似文献   

9.
In the context of approval design tests of packages for transport and storage of radioactive materials, there is an evident trend to numerical simulation with the finite element method. However, it remains a difficult issue to obtain verification of the calculation results through experimental investigations such as the drop test with simple geometric structures up to complete packages. Drop tests of simple geometric structures are used in this investigation in order to obtain statements concerning possibilities for numerical simulation. In the following the test and calculation results of a roundsteel impact will be presented in the context of verification of calculations by experiment and the safety assurance of packages.  相似文献   

10.
Abstract

BAM, as a competent German government institute for the mechanical and thermal testing of radioactive material transport and storage containers, operates unique drop and fire test facilities for experimental investigations on the open air BAM Test Site Technical Safety. To be able to perform even drop tests with full scale spent fuel or HAW casks (i.e. the German CASTOR cask designs), BAM constructed in 2004 a large drop test facility capable to handle 200 ton test objects, and to drop them onto a steel plate covered unyielding target with a mass of nearly 2600 ton. Drop test campaigns of the 181 ton GNS CONSTOR V/TC, the 129 ton MHI MSF-69BG and a 1∶2 scale model of the GNS CASTOR HAW28M (CASTOR HAW/TB2) have been performed since then. The experimental BAM drop testing activities can be supported also by drop testing of smaller packages (up to 2 ton) in an in-house test facility and by dynamic, guided impact testing of package components and material specimen inside a new drop test machine. In May 2008, a new modern fire test facility was put into operation. The facility provides two test stands fired with liquid propane. Testing in every case has to be completed by computational investigations, where BAM operates appropriate finite element modelling on appropriate computer codes, e.g. ABAQUS, LS-DYNA, ANSYS and other analytical tools.  相似文献   

11.
Abstract

The mechanical behaviour of transport and storage containers made of ductile cast iron melted with a higher content of recycled metal from decommissioning and dismantling of nuclear installations is investigated. Using drop tests with cubic container-like models, the influence of different real targets on the stresses in the cask body and the fracture behaviour is examined. A foundation for a test stand is suggested, which is simple to manufacture and which greatly improves the reproducibility of the test results. Dynamic fracture mechanics analyses of artificial crack-like defects in the test objects were performed by means of finite-element calculations to uncover safety margins. Numerous test results have shown that containers for final disposal can be built from a ductile cast iron with a fracture toughness of more than 50 per cent less than the lower bound value for the current licensed material. The limits of application of the material are also determined by the opportunities for safety assessment.  相似文献   

12.
为确保主泵的安全性和可靠性,主泵整机在完成集成设计后需通过试验进行验证。文中介绍了主泵设计与验证的总体思路,提出了主泵工程样机需开展的整机试验项目。基于已有的试验条件,进行了主泵整机集成试验验证方案的优化和可行性分析。分析结果表明,在充分开展主泵各模块、子模块、部件和材料的试验与分析的基础上,可采用小流量试验方案进行主泵整机集成试验验证。   相似文献   

13.
Abstract

A reference container of high capacity was analysed for loads beyond those it has to withstand during a 9 m IAEA drop test onto an unyielding target. In doing this a lid-end drop with shock absorber onto a real target was simulated. This is a possible accident for the rail transport of such casks. In this case the most critical components of the containment system are the primary lid bolts. The behaviour of the lid system and its sealing function were investigated with finite element (FE) analysis. To correlate the findings with a corresponding impact velocity onto real targets an analytical method was used. Despite the conservative assumptions made in this study a two-fold safety factor compared to the 9 m drop tests onto the unyielding target could be shown. The quantification of the additional safety the cask might provide requires further basic investigations on the behaviour of the real targets considered as well as the reduction of the conservatism included in the assumptions made up to now.  相似文献   

14.
袁亮  杨洁 《核动力工程》2022,43(2):122-125
乏燃料转运设备核电厂内运输跌落分析是整体结构安全分析中最严苛的工况,为了解决设备跌落的动力学冲击分析评价问题,使用有限元分析模拟软件LS-DYNA对乏燃料转运设备进行数值模拟,针对典型乏燃料转运设备的跌落进行建模,并结合实际厂址条件,跌落的接触地面采用Holmquist-Johnson-Cook(HJC)模型,通过模拟计算,获得设备加速度曲线和关键位置形变量,研究结果表明:在结合厂内实际地面条件的情况下,贮存套筒变形量受跌落角度影响很大,在贮存运输过冲中应避免设备竖直姿态的跌落。本文的分析评价方法可以为乏燃料转运设备的自主化设计提供技术支持和理论依据。   相似文献   

15.
The cask CASTOR 440/84 is designed to be used for transportation and storage of 84 spent PWR fuel elements from Soviet VVER 440 reactors. The fuel basket of the CASTOR 440/84 is subjected to the highest loading under type B test conditions, i.e. in the 9 m horizontal drop orientation. By quasistatic calculations using the FEM code ANSYS, the maximum stresses for a deceleration of 82g have been calculated and it has been proven that the criticality safety of the fuel arrangement is guaranteed under these severe conditions. Additional calculations for an even higher deceleration of 115g demonstrate sufficient safety reserves of the design.  相似文献   

16.
Abstract

In recent years, BAM Federal Institute for Materials Research and Testing finalised the competent authority assessment of the mechanical and thermal package design in several German approval procedures of new spent fuel and high level waste package designs. The combination of computational methods and experimental investigations in conjunction with materials and cask components testing is the most common approach to mechanical safety assessment. The methodology in the field of safety analysis, including associated assessment criteria and procedures, has evolved rapidly over the last years. The design safety analysis must be based on a clear and comprehensive safety evaluation concept, including defined assessment criteria and constructional safety goals. In general, for new package designs, the implementation of experimental package drop tests in the approval process should be obligatory. Additionally, pre- and post-test calculations as well as components or material testing could be important. The extent to which drop tests are necessary depends on the individual package construction, the materials used and identified safety margins in the design.  相似文献   

17.
Abstract

The use of spent fuel shipping and storage casks made of ductile cast iron (DCI) has been common practice for about 15 years when the development of such casks started in Germany where qualified foundries are able to produce these heavy section castings at the high quality level needed for this kind of application. To promote the discussion on safety against brittle failure a lot of research had been carried out in different countries. The two test programmes in Germany on casks with big artificial flaws under severe impact conditions is summarised in this paper. The first test object was a thick walled DCI ‘pipe’ (150 mm wall thickness) with dimensions equivalent to a 1:2.5 scale cask model. It was dropped with a 40 mm deep laser sharpended flaw from heights of up to 9 m onto rails. As a second test object a full scale CASTOR VHLW cask was used. This specimen had a flaw with a depth of 120 mm in a 260 mm thick wall. With increasing drop heights (up to 14 m) and stress intensity factors (up to material fracture toughness) this object was also dropped onto rails. For both cases the measured data (decelerations, crack opening displacement, strains, material properties) are presented. No brittle failure occurred, although in the 14 m drop of the CASTOR VHLW Cask the impact was 6.5 times higher than the impact measured in the mechanical test of the type B package design. The results demonstrate that DCI casks have significantly high safety margins even in the hypothetical case of an impact beyond type B package design requirements.  相似文献   

18.
Dual purpose casks for the transportation and storage of spent nuclear fuel and other radioactive materials require very high leak tightness of lid closure systems under accident conditions as well as in the long term to prevent activity release. For that purpose metal seals of specific types with an inner helical spring and outer metal liners are widely used and have shown their excellent performance if certain quality assurance requirements for fabrication and assembling are satisfied. Well defined surface roughness, clean and dry inert conditions are therefore essential. No seal failure in a loaded cask happened under these conditions until today. Nevertheless, the considered and licensed operation period is limited and all safety assessments have been performed and approved for this period of time which is 40 years in Germany so far. However, in the meantime longer storage periods might be necessary for the future and therefore additional material data will be required. BAM is involved in the qualification and evaluation procedures of those seals from the early beginning. Because long term tests are always time consuming BAM has early decided to perform additional tests with specific test seal configurations to gain a better understanding of the long term behaviour with regard to seal pressure force, leakage rate and useable resilience which is safety relevant mainly in case of accidental mechanical loads inside a storage facility or during a subsequent transport. Main test parameters are the material of the outer seal jacket (silver or aluminium) and the temperature. This paper presents the BAM test program including an innovative test mock-up and most recent test results. Based on these data extrapolation models to extended time periods are discussed, and also future plans to continue tests and to investigate seal behaviour for additional test parameters are explained.  相似文献   

19.
铝基碳化硼是一种新型的乏燃料贮存架结构材料,需对其各项性能进行研究,其中,铝基碳化硼材料的耐辐照性能是关键参数之一。为进行铝基碳化硼材料的堆内辐照考验,并保证其在堆内辐照的安全,针对铝基碳化硼辐照方案的特点,采用了CFD程序进行热工校核计算,分析了铝基碳化硼材料在堆内辐照的安全特性,优化了堆内辐照方案。  相似文献   

20.
Abstract

In the approval procedure of transport packages for radioactive materials, the competent authority mechanical and thermal safety assessment is carried out in Germany by BAM Federal Institute for Materials Research and Testing. The combination of experimental investigations and numerical calculations in conjunction with materials and components testing is the basis of the safety assessment concept of the BAM. Among other mechanical test scenarios, a 1 metre drop test onto a steel bar has to be considered for the application of the hypothetical accident conditions to Type B packages according to IAEA regulations. Within the approval procedure for the new German package design of the HLW cask CASTOR® HAW 28M, designed by GNS Gesellschaft für Nuklear-Service Germany, a puncture drop test was performed with a half-scale model of the cask at ?40°C. For independent assessment and to control the safety analysis presented by the applicant, BAM developed a complex finite element (FE) model for a dynamical ABAQUS/ExplicitTM analysis. This paper describes in detail the use of the FE method for modelling the puncture drop test within an actual assessment strategy. At first, investigations of the behaviour of the steel bar were carried out. Different friction coefficients and the material law of the bar were analysed by using a ‘rigid-body’ approximation for the cask body. In the next step, a more detailed FE model with a more realistic material definition for the cask body was developed. The validation of calculated strains was carried out by comparison with the results of the strain gauges located at the relevant points of the cask model. The influence of the FE meshing is described. Finally, the validated FE half-scale model was expanded to full-scale dimension. Scaling effects were analysed. The model was used for safety assessment of the package to be approved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号