首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrogen-radical durability of TiO2 thin films has been investigated under conditions for preparing Si thin film solar cells by catalytic chemical vapor deposition method. It is found that the composition and the optical transmittance of TiO2 films are almost the same before and after hydrogen-radical exposures with a filament temperature at approximately 1700 °C and a H2 pressure of approximately 133 Pa. The durability of TiO2 film has also been observed even under the condition with higher hydrogen-radical density under a filament temperature at approximately 1900 °C, in which SnO2 and ZnO are easily deoxidized. The application of TiO2 film as a protecting material of transparent conducting oxide film for Si thin film solar cells are discussed by the hydrogen-radical durability and fundamental properties of TiO2 thin film.  相似文献   

2.
Zirconium doped indium oxide thin films were deposited by the atomic layer deposition technique at 500 °C using InCl3, ZrCl4 and water as precursors. The films were characterised by X-ray diffraction, energy dispersive X-ray analysis and by optical and electrical measurements. The films had polycrystalline In2O3 structure. High transparency and resistivity of 3.7×10−4 Ω cm were obtained.  相似文献   

3.
AgInSnxS2−x (x = 0–0.2) polycrystalline thin films were prepared by the spray pyrolysis technique. The samples were deposited on glass substrates at temperatures of 375 and 400 °C from alcoholic solutions comprising silver acetate, indium chloride, thiourea and tin chloride. All deposited films crystallized in the chalcopyrite structure of AgInS2. A p-type conductivity was detected in the Sn-doped samples deposited at 375 °C, otherwise they are n-type. The optical properties of AgInSnxS2−x (x < 0.2) resemble those of chalcopyrite AgInS2. Low-temperature PL measurements revealed that Sn occupying an S-site could be the responsible defect for the p-type conductivity observed in AgInSnxS2−x (x < 2) thin films.  相似文献   

4.
Transparent conducting fluorine-doped tin oxide (SnO2:F) films have been deposited on glass substrates by pulsed laser deposition. The structural, electrical and optical properties of the SnO2:F films have been investigated as a function of F-doping level and substrate deposition temperature. The optimum target composition for high conductivity was found to be 10 wt.% SnF2 + 90 wt.% SnO2. Under optimized deposition conditions (Ts = 300 °C, and 7.33 Pa of O2), electrical resistivity of 5 × 10− 4 Ω-cm, sheet resistance of 12.5 Ω/□, average optical transmittance of 87% in the visible range, and optical band-gap of 4.25 eV were obtained for 400 nm thick SnO2:F films. Atomic force microscopy measurements for these SnO2:F films indicated that their root-mean-square surface roughness ( 6 Å) was superior to that of commercially available chemical vapor deposited SnO2:F films ( 85 Å).  相似文献   

5.
Tantalum oxide films have been deposited by 355 nm pulsed laser ablation of metallic Ta target in O3/O2 ambient. The structure and the composition of as-deposited and annealed films were examined by X-ray diffraction and Fourier transform infrared spectroscopy. The measurements of the current–voltage and capacitance–voltage characteristics of the Al/Ta2O5/Si capacitors were performed to reveal the electrical properties of the Ta2O5 films. The effects of annealing temperature on the characteristics of thin films have been studied. The results suggest that the films annealed above 700°C have the structure of orthorhombic β-Ta2O5, thc annealing treatment at high temperature decreases the bulk trap charge, the border trap, and the interface trap densities of as-deposited films, and improves significantly the dielectric and electrical properties of Ta2O5 film.  相似文献   

6.
Thickness-dependent properties of sprayed iridium oxide thin films   总被引:1,自引:0,他引:1  
Iridium oxide thin films with variable thickness were deposited by spray pyrolysis technique (SPT), onto the amorphous glass substrates kept at 350 °C. The volume of iridium chloride solution was varied to obtain iridium oxide thin films with thickness ranging from 700 to 2250 Å. The effect of film thickness on structural and electrical properties was studied. The X-ray diffraction (XRD) studies revealed that the as-deposited samples were amorphous and those annealed at 600 °C for 3 h in milieu of air were polycrystalline IrO2. The crystallinity of Ir-oxide films ameliorate with film thickness thereby preferred orientation along (1 1 0) remains unchanged. The infrared spectroscopic results show Ir–O and Ir–O2 bands. The room temperature electrical resistivity (ρRT) of these films decreases with increase in film thickness. The p-type semiconductor to metallic transition was observed at 600 °C.  相似文献   

7.
As-doped ZnO films were prepared by co-sputtering ZnO and Zn3As2 targets on glass substrates at various temperatures from 250 to 500 °C. The effects of substrate temperature on structural, electrical and optical properties of the films were investigated. The films grown at temperatures from 250 to 400 °C were c-axis oriented and those deposited above 400 °C exhibited poor crystallinity. Hall measurement showed that p-type ZnO:As films were prepared at different temperatures. With increasing the substrate temperature from 250 to 500 °C, the optical band gap (Eg) first decreased, and then increased. The Eg changes upon the substrate temperature were due to the effect of substrate temperature on the crystallinity of ZnO films.  相似文献   

8.
TiO2/SnO2 thin films with different tin atomic percentages were successfully prepared on glass substrates by the spray pyrolysis method from an alcoholic solution of TiO[C5H7O2]2 with different concentrations of SnCl4. The TiO2/SnO2 thin films prepared at 450 °C presented the anatase phase in polycrystalline configuration from %Sn = 0 in the starting solution up to %Sn = 20, at higher tin content the films present an amorphous configuration. The resulting thin films have a homogeneous surface structure with some porosity. The photocatalytical properties of the films were evaluated with the degradation of methylene blue. The products of the degradation reaction were identified by 1H nuclear magnetic resonance and the film properties were studied by atomic force microscopy, scanning electron microscopy, UV–Vis spectroscopy, and X-ray diffraction.  相似文献   

9.
Amita Verma  Anshu Goyal  R.K. Sharma   《Thin solid films》2008,516(15):4925-4933
The properties of sol–gel derived CeTi2O6 thin films deposited using a solution of cerium chloride heptahydrate and titanium propoxide in ethanol are discussed. The effect of annealing temperature on structural, optical, photoluminescence, photocatalysis and electrochemical characteristics has been examined. Lowest annealing temperature for the formation of crystalline CeTi2O6 phase in these samples is identified as 580 °C. The optical transmittance of the films is observed to be independent of the annealing temperature. The optical energy bandgap of the 600 °C annealed film for indirect transition is influenced by the presence of anatase phase of TiO2 in its structure. Fourier transform infrared spectroscopy investigations have evidenced increased bond strength of the Ti–O–Ti network in the films as a function of annealing temperature. The photoluminescence intensity of the films has shown dependence on the annealing temperature with the films fired at 450 °C exhibiting the maximum photoluminescence activity. The decomposition of methyl orange and eosin (yellow) under UV–visible light irradiation in the presence of crystalline CeTi2O6 films shows the presence of photoactivity in these films. The photocatalytic response of CeTi2O6 films is found to be superior to the TiO2 films. In comparison to crystalline films, the amorphous films have shown superior electrochemical characteristics. The 500 °C annealed amorphous films have exhibited the most appropriate properties for incorporation in electrochromic devices comprising tungsten oxide as the primary electrochromic electrode.  相似文献   

10.
A study of growth, structure, and properties of Eu2O3 thin films were carried out. Films were grown at 500–600 °C temperature range on Si(1 0 0) and fused quartz from the complex of Eu(acac)3·Phen by low pressure metalorganic chemical vapor deposition technique which has been rarely used for Eu2O3 deposition. These films were polycrystalline. Depending on growth conditions and substrates employed, these films had also possessed a parasitic phase. This phase can be removed by post-deposition annealing in oxidizing ambient. Morphology of the films was characterized by well-packed spherical mounds. Optical measurements exhibited that the bandgap of pure Eu2O3 phase was 4.4 eV. High frequency 1 MHz capacitance–voltage (CV) measurements showed that the dielectric constant of pure Eu2O3 film was about 12. Possible effects of cation and oxygen deficiency and parasitic phase on the optical and electrical properties of Eu2O3 films have been briefly discussed.  相似文献   

11.
This article reports the optical and morphological properties of dip-coated TiO2 and ZrO2 thin films on soda-lime glass substrates by metal-organic decomposition (MOD) of titaniumIV and zirconiumIV acetylacetonates respectively. Thermogravimetric and differential thermal analysis (DTA–TG) were performed on the precursor powders, indicating pure TiO2 anatase and tetragonal ZrO2 phase formation. Phase crystallization processes took place in the range of 300–500 °C for anatase and of 410–500 °C for ZrO2. Fourier Transform Infrared Spectroscopy (FT-IR) was used to confirm precursor bidentate ligand formation with keno-enolic equilibrium character. Deposited films were heated at different temperatures, and their structural, optical and morphological properties were studied by grazing-incidence X-ray Diffraction (GIXRD) and X-Ray Photoelectron Spectroscopy (XPS), Ultraviolet Visible Spectroscopy (UV-Vis), and Atomic Force Microscopy (AFM) respectively. Film thinning and crystalline phase formation were enhanced with increasing temperature upon chelate decomposition. The optimum annealing temperature for both pure anatase TiO2 and tetragonal ZrO2 thin films was found to be 500 °C since solid volume fraction increased with temperature and film refractive index values approached those of pure anatase and tetragonal zirconia. Conditions for clean stoichiometric film formation with an average roughness value of 2 nm are discussed in terms of material binding energies indicated by XPS analyses, refractive index and solid volume fraction obtained indirectly by UV-Vis spectra, and crystalline peak identification provided by GIXRD.  相似文献   

12.
P.C. Joshi  S.B. Desu 《Thin solid films》1997,300(1-2):289-294
Polycrystalline BaTiO3 thin films having the perovskite structure were successfully produced on platinum coated silicon, bare silicon, and fused quartz substrate by the combination of the metallo-organic solution deposition technique and post-deposition rapid thermal annealing treatment. The films exhibited good structural, electrical, and optical properties. The electrical measurements were conducted on metal-ferroelectric-metal (MFM) and metal-ferroelectric-semiconductor (MFS) capacitors. The typical measured small signal dielectric constant and dissipation factor at a frequency of 100 kHz were 255 and 0.025, respectively, and the remanent polarization and coercive field were 2.2 μC cm−2 and 25 kV cm−1, respectively. The resistivity was found to be in the range 1010–1012 Ω·cm, up to an applied electric field of 100 kV cm−1, for films annealed in the temperature range 550–700 °C. The films deposited on bare silicon substrates exhibited good film/substrate interface characteristics. The films deposited on fused quartz were highly transparent. An optical band gap of 3.5 eV and a refractive index of 2.05 (measured at 550 nm) was obtained for polycrystalline BaTiO3 thin film on fused quartz substrate. The optical dispersion behavior of BaTiO3 thin films was found to fit the Sellmeir dispersion formula well.  相似文献   

13.
Highly preferred oriented lead barium titanate (Pb1−x,Bax)TiO3 thin film, with particular emphasis on (Pb0.5,Ba0.5)TiO3, can be obtained by spin-coating on MgO (100) substrate by using the precursor sol, which was synthesized from acetylacetone chelating with titanium isopropoxide and ethylene glycol as a solvent, in the sol-gel process. Film thickness, pyrolysis temperature and heating rate were studied systemically to investigate their influences on the formation of preferred oriented thin films. The highly preferred (001)/(100) oriented thin film could be obtained by the pyrolysis of wet film at 500 °C and annealing at 600 °C at a slow heating rate of 5 °C/min. It is confirmed that the tetragonal perovskite structure of the titanate ceramic decreases with an increase of Ba content in (Pb1−x,Bax)TiO3. The (001)/(100) oriented films were synthesized from all compositions between x = 0.2 and x = 0.8, at a crystallization temperature of 600 °C. In particular, for the Ba content in the range of x = 0.50.6, highly preferred (001)/(100) planes were observed.  相似文献   

14.
Electrochromic properties of nanocrystalline MoO3 thin films   总被引:1,自引:0,他引:1  
Electrochromic MoO3 thin films were prepared by a sol–gel spin-coating technique. The spin-coated films were initially amorphous; they were calcined, producing nanocrystalline MoO3 thin films. The effects of annealing temperatures ranging from 100 °C to 500 °C were investigated. The electrochemical and electrochromic properties of the films were measured by cyclic voltammetry and by in-situ optical transmittance techniques in 1 M LiClO4/propylene carbonate electrolyte. Experimental results showed that the transmittance of MoO3 thin films heat-treated at 350 °C varied from 80% to 35% at λ = 550 nm (ΔT =  45%) and from 86% to 21% at λ ≥ 700 nm (ΔT =  65%) after coloration. Films heat-treated at 350 °C exhibited the best electrochromic properties in the present study.  相似文献   

15.
A series of 0.2–0.6 μm thick SnOx films were deposited onto borosilicate and sodalime silica glass substrates by atmospheric plasma discharge chemical vapor deposition at 80 °C. SnOx films deposited from monobutyltin trichloride contained a large percentage of SnCl2:2H2O, and therefore were partially soluble in water. SnOx coatings deposited from tetrabutyltin were not soluble in water or organic solvents, had good adhesion even at growth rates as high as 2.3 nm/s, had high transparency of  90% and electrical resistivity of 107 Ω cm. As-grown tin oxide coatings were amorphous with a small concentration of SnO2, SnO and Sn crystalline phases as determined by grazing angle X-ray diffraction and X-ray photoelectron spectroscopy measurements. Upon annealing in air at 600 °C the resistivity of SnOx films decreased to 5–7 Ω cm. Furthermore, optical and X-ray measurements indicated that SnOx was converted into SnO2 (cassiterite) with a direct band gap of 3.66 eV. Annealing of as-grown SnOx films in vacuum at 340 °C led to formation of the p-type conductor SnO/SnOx. The indirect band gap of SnO was calculated from the optical spectra to be 0.3 eV.  相似文献   

16.
CaCu3Ti4O12 (CCTO) thin films were successfully deposited on Pt/Ti/SiO2/Si(1 0 0) substrates using pulsed-laser deposition technique. The crystalline structure and the surface morphology of the CCTO thin films were greatly affected by the substrate temperature and oxygen pressure. Thin films with a (2 2 0) preferential orientation were obtained at the substrate temperature above 700 °C and oxygen pressure above 13.3 Pa. The 480-nm thin films deposited under 720 °C and 26.6 Pa have a fairly high dielectric constant of near 2000 at 10 kHz and room temperature. The values of the dielectric constant and loss and their temperature-dependence under different frequency are comparable with those obtained in the epitaxial CCTO films grown on oxide substrates.  相似文献   

17.
Thermoelectric bismuth telluride thin films were prepared on SiO2/Si substrates by radio-frequency (RF) magnetron sputtering. Co-sputtering method with Bi and Te targets was adopted to control films' composition. BixTey thin films were elaborated at various deposition temperatures with fixed RF powers, which yielded the stoichiometric Bi2Te3 film deposition without intentional substrate heating. The effects of deposition temperature on surface morphology, crystallinity and electrical transport properties were investigated. Hexagonal crystallites were clearly visible at the surface of films deposited above 290 °C. Change of dominant phase from rhombohedral Bi2Te3 to hexagonal BiTe was confirmed with X-ray diffraction analyses. Seebeck coefficients of all samples have negative value, indicating the prepared BixTey films are n-type conduction. Optimum of Seebeck coefficient and power factor were obtained at the deposition temperature of 225 °C (about − 55 μV/K and 3 × 10− 4 W/K2·m, respectively). Deterioration of thermoelectric properties at higher temperature could be explained with Te deficiency and resultant BiTe phase evolution due to the evaporation of Te elements from the film surface.  相似文献   

18.
Thin films of titanium oxide have been deposited on (100) silicon wafers and on quartz substrates by reactive r.f. magnetron sputtering from a 99.6% pure Titanium target. Amorphous and overoxidised coatings (TiO2.2) have been obtained from this technique. The influence of the post-deposition annealing between 300 °C and 1100 °C on the structural and optical properties and on the surface morphology has been investigated. The results of X-ray diffraction showed that films annealed from 300 to 500 °C have an anatase crystalline structure whereas those annealed at 1100 °C have a rutile crystalline structure. Optical analyses showed that UV-Vis transmission spectra are strongly modified by the annealing temperature and refractive index of TiOx layers also changes. Atomic force microscopy measurements corroborate optical and structural analyses and showed that the surface of the coatings can have various appearances and morphologies for the annealing temperatures investigated.  相似文献   

19.
Chang Jung Kim   《Thin solid films》2004,450(2):261-264
Ferroelectric bismuth lanthanum titanate (Bi3.25La0.75Ti3O12; BLT) thin films were deposited on Pt/TiO2/SiO2/Si substrate by chemical solution deposition method. The films were crystallized in the temperature range of 600–700 °C. The spontaneous polarization (Ps) and the switching polarization (2Pr) of BLT film annealed at 700 °C for 30 min were 22.6 μC/cm2 and 29.1 μC/cm2, respectively. Moreover, the BLT capacitor did not show any significant reduction of hysteresis for 90 min at 300 °C in the forming gas atmosphere.  相似文献   

20.
Thin films of the aluminum oxide (Al2O3)–titanium oxide (TiO2) system including Al2O3, TiO2, and Al2O3/TiO2 were prepared by radio-frequency (r.f.) magnetron sputtering using ceramic targets of Al2O3, TiO2, and Al2O3/TiO2 composites with different Al2O3/TiO2 ratio. These films were studied at different substrate temperatures, r.f. powers, and annealing temperatures. Composition, microstructure, thermomechanical property of internal stress, and mechanical property of scratch adhesion, were evaluated. A thin film with a dielectric constant of 62 and a loss tangent of 0.012 was obtained at 500 °C from a 10/90 target. This thin film remained the high dielectric constant of TiO2, but had an improvement in the dielectric loss tangent. Al2O3-containing films had a higher resistivity and breakdown field, which was improved further by annealing. Optical properties, such as refractive index and optical transmittance, were also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号