首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
It is highly desirable, although very challenging, to develop self‐healable materials exhibiting both high efficiency in self‐healing and excellent mechanical properties at ambient conditions. Herein, a novel Cu(II)–dimethylglyoxime–urethane‐complex‐based polyurethane elastomer (Cu–DOU–CPU) with synergetic triple dynamic bonds is developed. Cu–DOU–CPU demonstrates the highest reported mechanical performance for self‐healing elastomers at room temperature, with a tensile strength and toughness up to 14.8 MPa and 87.0 MJ m?3, respectively. Meanwhile, the Cu–DOU–CPU spontaneously self‐heals at room temperature with an instant recovered tensile strength of 1.84 MPa and a continuously increased strength up to 13.8 MPa, surpassing the original strength of all other counterparts. Density functional theory calculations reveal that the coordination of Cu(II) plays a critical role in accelerating the reversible dissociation of dimethylglyoxime–urethane, which is important to the excellent performance of the self‐healing elastomer. Application of this technology is demonstrated by a self‐healable and stretchable circuit constructed from Cu–DOU–CPU.  相似文献   

2.
Over the past few years, there has been a great deal of interest in the development of hydrogel materials with tunable structural, mechanical, and rheological properties, which exhibit rapid and autonomous self‐healing and self‐recovery for utilization in a broad range of applications, from soft robotics to tissue engineering. However, self‐healing hydrogels generally either possess mechanically robust or rapid self‐healing properties but not both. Hence, the development of a mechanically robust hydrogel material with autonomous self‐healing on the time scale of seconds is yet to be fully realized. Here, the current advances in the development of autonomous self‐healing hydrogels are reviewed. Specifically, methods to test self‐healing efficiencies and recoveries, mechanisms of autonomous self‐healing, and mechanically robust hydrogels are presented. The trends indicate that hydrogels that self‐heal better also achieve self‐healing faster, as compared to gels that only partially self‐heal. Recommendations to guide future development of self‐healing hydrogels are offered and the potential relevance of self‐healing hydrogels to the exciting research areas of 3D/4D printing, soft robotics, and assisted health technologies is highlighted.  相似文献   

3.
Achieving multifunctional shape‐changing hydrogels with synergistic and engineered material properties is highly desirable for their expanding applications, yet remains an ongoing challenge. The synergistic design of multiple dynamic chemistries enables new directions for the development of such materials. Herein, a molecular design strategy is proposed based on a hydrogel combining acid–ether hydrogen bonding and imine bonds. This approach utilizes simple and scalable chemistries to produce a doubly dynamic hydrogel network, which features high water uptake, high strength and toughness, excellent fatigue resistance, fast and efficient self‐healing, and superfast, programmable shape changing. Furthermore, deformed shapes can be memorized due to the large thermal hysteresis. This new type of shape‐changing hydrogel is expected to be a key component in future biomedical, tissue, and soft robotic device applications.  相似文献   

4.
5.
6.
7.
8.
9.
Hydrogels play a central role in a number of medical applications and new research aims to engineer their mechanical properties to improve their capacity to mimic the functional dynamics of native tissues. This study shows hierarchical mechanical tuning of hydrogel networks by utilizing mixtures of kinetically distinct reversible covalent crosslinks. A methodology is described to precisely tune stress relaxation in PEG networks formed from mixtures of two different phenylboronic acid derivatives with unique diol complexation rates, 4‐carboxyphenylboronic acid, and o‐aminomethylphenylboronic acid. Gel relaxation time and the mechanical response to dynamic shear are exquisitely controlled by the relative concentrations of the phenylboronic acid derivatives. The differences observed in the crossover frequencies corresponding to pKa differences in the phenylboronic acid derivatives directly connect the molecular kinetics of the reversible crosslinks to the macroscopic dynamic mechanical behavior. Mechanical tuning by mixing reversible covalent crosslinking kinetics is found to be independent of other attributes of network architecture, such as molecular weight between crosslinks.  相似文献   

10.
The synthesis of hybrid hydrogels by pH‐controlled structural transition with exceptional rheological properties as cellular matrix is reported. “Depsi” peptide sequences are grafted onto a polypeptide backbone that undergo a pH‐induced intramolecular O–N–acyl migration at physiological conditions affording peptide nanofibers (PNFs) as supramolecular gelators. The polypeptide–PNF hydrogels are mechanically remarkably robust. They reveal exciting thixotropic behavior with immediate in situ recovery after exposure to various high strains over long periods and self‐repair of defects by instantaneous reassembly. High cytocompatibility, convenient functionalization by coassembly, and controlled enzymatic degradation but stability in 2D and 3D cell culture as demonstrated by the encapsulation of primary human umbilical vein endothelial cells and neuronal cells open many attractive opportunities for 3D tissue engineering and other biomedical applications.  相似文献   

11.
Development of fast curing and easy modeling of colloidal photonic crystals is highly desirable for various applications. Here, a novel type of injectable photonic hydrogel (IPH) is proposed to achieve self‐healable structural color by integrating microfluidics‐derived photonic supraballs with supramolecular hydrogels. The supramolecular hydrogel is engineered via incorporating β‐cyclodextrin/poly(2‐hydroxypropyl acrylate‐coN‐vinylimidazole) (CD/poly(HPA‐co‐VI)) with methacrylated gelatin (GelMA), and serves as a scaffold for colloidal crystal arrays. The photonic supraballs derived from the microfluidics techniques, exhibit excellent compatibility with the hydrogel scaffolds, leading to enhanced assembly efficiency. By virtue of hydrogen bonds and host–guest interactions, a series of self‐healable photonic hydrogels (linear, planar, and spiral assemblies) can be facilely assembled. It is demonstrated that the spherical symmetry of the photonic supraballs endows them with identical optical responses independent of viewing angles. In addition, by taking the advantage of angle independent spectrum characteristics, the IPH presents beneficial effects in reflective cooling, which can achieve up to 17.4 °C in passive solar reflective cooling. The strategy represents an easy‐to‐perform platform for the construction of IPH, providing novel insights into macroscopic self‐assembly toward thermal management applications.  相似文献   

12.
Injectable and malleable hydrogels that combine excellent biocompatibility, physiological stability, and ease of use are highly desirable for biomedical applications. Here, a simple and scalable strategy is reported to make injectable and malleable zwitterionic polycarboxybetaine hydrogels, which are superhydrophilic, nonimmunogenic, and completely devoid of nonspecific interactions. When zwitterionic microgels are reconstructed, the combination of covalent crosslinking inside each microgel and supramolecular interactions between them gives the resulting zwitterionic injectable pellet (ZIP) constructs supportive moduli and tunable viscoelasticity. ZIP constructs can be lyophilized to a sterile powder that fully recovers its strength and elasticity upon rehydration, simplifying storage and formulation. The lyophilized powder can be reconstituted with any aqueous suspension of cells or therapeutics, and rapidly and spontaneously self‐heals into a homogeneous composite construct. This versatile and highly biocompatible platform material shows great promise for many applications, including as an injectable cell culture scaffold that promotes multipotent stem cell expansion and provides oxidative stress protection.  相似文献   

13.
14.
15.
Controlled membrane fusion of proteinosome‐based protocells is achieved via a hydrogel‐mediated process involving dynamic covalent binding, self‐healing, and membrane reconfiguration at the contact interface. The rate of proteinosome fusion is dependent on dynamic Schiff base covalent interchange, and is accelerated in the presence of encapsulated glucose oxidase and glucose, or inhibited with cinnamyl aldehyde due to enzyme‐mediated decreases in pH or competitive covalent binding, respectively. The coordinated fusion of the proteinosomes leads to the concomitant transportation and redistribution of entrapped payloads such as DNA and dextran. Silica colloids with amino‐functionalized surfaces undergo partial fusion with the proteinosomes via a similar dynamic hydrogel‐mediated mechanism. Overall, the strategy provides opportunities for the development of interacting colloidal objects, control of collective behavior in soft matter microcompartmentalized systems, and increased complexity in synthetic protocell communities.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号