首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Electrocatalytic hydrogen evolution reaction (HER) based on water splitting holds great promise for clean energy technologies, in which the key issue is exploring cost‐effective materials to replace noble metal catalysts. Here, a sequential chemical etching and pyrolysis strategy are developed to prepare molybdenum carbide‐decorated metallic cobalt@nitrogen‐doped porous carbon polyhedrons (denoted as Mo/Co@N–C) hybrids for enhanced electrocatalytic hydrogen evolution. The obtained metallic Co nanoparticles are coated by N‐doped carbon thin layers while the formed molybdenum carbide nanoparticles are well‐dispersed in the whole Co@N–C frames. Benefiting from the additionally implanted molybdenum carbide active sites, the HER performance of Mo/Co@N–C hybrids is significantly promoted compared with the single Co@N–C that is derived from the pristine ZIF‐67 both in alkaline and acidic media. As a result, the as‐synthesized Mo/Co@N–C hybrids exhibit superior HER electrocatalytic activity, and only very low overpotentials of 157 and 187 mV are needed at 10 mA cm?2 in 1 m KOH and 0.5 m H2SO4, respectively, opening a door for rational design and fabrication of novel low‐cost electrocatalysts with hierarchical structures toward electrochemical energy storage and conversion.  相似文献   

2.
The design on synthesizing a sturdy, low‐cost, clean, and sustainable electrocatalyst, as well as achieving high performance with low overpotential and good durability toward water splitting, is fairly vital in environmental and energy‐related subject. Herein, for the first time the growth of sulfur (S) defect engineered self‐supporting array electrode composed of metallic Re and ReS2 nanosheets on carbon cloth (referred as Re/ReS2/CC) via a facile hydrothermal method and the following thermal treatment with H2/N2 flow is reported. It is expected that, for example, the as‐prepared Re/ReS2‐7H/CC for the electrocatalytic hydrogen evolution reaction (HER) under acidic medium affords a quite low overpotential of 42 mV to achieve a current density of 10 mA cm?2 and a very small Tafel slope of 36 mV decade?1, which are comparable to some of the promising HER catalysts. Furthermore, in the two‐electrode system, a small cell voltage of 1.30 V is recorded under alkaline condition. Characterizations and density functional theory results expound that the introduced S defects in Re/ReS2‐7H/CC can offer abundant active sites to advantageously capture electron, enhance the electron transport capacity, and weaken the adsorption free energy of H* at the active sites, being responsible for its superior electrocatalytic performance.  相似文献   

3.
The development of active and durable bifunctional electrocatalysts for overall water splitting is mandatory for renewable energy conversion. This study reports a general method for controllable synthesis of a class of IrM (M = Co, Ni, CoNi) multimetallic porous hollow nanocrystals (PHNCs), through etching Ir‐based, multimetallic, solid nanocrystals using Fe3+ ions, as catalysts for boosting overall water splitting. The Ir‐based multimetallic PHNCs show transition‐metal‐dependent bifunctional electrocatalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic electrolyte, with IrCo and IrCoNi PHNCs being the best for HER and OER, respectively. First‐principles calculations reveal a ligand effect, induced by alloying Ir with 3d transition metals, can weaken the adsorption energy of oxygen intermediates, which is the key to realizing much‐enhanced OER activity. The IrCoNi PHNCs are highly efficient in overall‐water‐splitting catalysis by showing a low cell voltage of only 1.56 V at a current density of 2 mA cm?2, and only 8 mV of polarization‐curve shift after a 1000‐cycle durability test in 0.5 m H2SO4 solution. This work highlights a potentially powerful strategy toward the general synthesis of novel, multimetallic, PHNCs as highly active and durable bifunctional electrocatalysts for high‐performance electrochemical overall‐water‐splitting devices.  相似文献   

4.
Heterogenous electrocatalysts based on transition metal sulfides (TMS) are being actively explored in renewable energy research because nanostructured forms support high intrinsic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Herein, it is described how researchers are working to improve the performance of TMS‐based materials by manipulating their internal and external nanoarchitectures. A general introduction to the water‐splitting reaction is initially provided to explain the most important parameters in accessing the catalytic performance of nanomaterials catalysts. Later, the general synthetic methods used to prepare TMS‐based materials are explained in order to delve into the various strategies being used to achieve higher electrocatalytic performance in the HER. Complementary strategies can be used to increase the OER performance of TMS, resulting in bifunctional water‐splitting electrocatalysts for both the HER and the OER. Finally, the current challenges and future opportunities of TMS materials in the context of water splitting are summarized. The aim herein is to provide insights gathered in the process of studying TMS, and describe valuable guidelines for engineering other kinds of nanomaterial catalysts for energy conversion and storage technologies.  相似文献   

5.
Nanostructured transition metal dichalcogenides (TMDs) are proven to be efficient and robust earth‐abundant electrocatalysts to potentially replace precious platinum‐based catalysts for the hydrogen evolution reaction (HER). However, the catalytic efficiency of reported TMD catalysts is still limited by their low‐density active sites, low conductivity, and/or uncleaned surface. Herein, a general and facile method is reported for high‐yield, large‐scale production of water‐dispersed, ultrasmall‐sized, high‐percentage 1T‐phase, single‐layer TMD nanodots with high‐density active edge sites and clean surface, including MoS2, WS2, MoSe2, Mo0.5W0.5S2, and MoSSe, which exhibit much enhanced electrochemical HER performances as compared to their corresponding nanosheets. Impressively, the obtained MoSSe nanodots achieve a low overpotential of ?140 mV at current density of 10 mA cm?2, a Tafel slope of 40 mV dec?1, and excellent long‐term durability. The experimental and theoretical results suggest that the excellent catalytic activity of MoSSe nanodots is attributed to the high‐density active edge sites, high‐percentage metallic 1T phase, alloying effect and basal‐plane Se‐vacancy. This work provides a universal and effective way toward the synthesis of TMD nanostructures with abundant active sites for electrocatalysis, which can also be used for other applications such as batteries, sensors, and bioimaging.  相似文献   

6.
The fundamental understanding of electrocatalytic active sites for hydrogen evolution reaction (HER) is significantly important for the development of metal complex involved carbon electrocatalysts with low kinetic barrier. Here, the MSx Ny (M = Fe, Co, and Ni, x /y are 2/2, 0/4, and 4/0, respectively) active centers are immobilized into ladder‐type, highly crystalline coordination polymers as model carbon‐rich electrocatalysts for H2 generation in acid solution. The electrocatalytic HER tests reveal that the coordination of metal, sulfur, and nitrogen synergistically facilitates the hydrogen ad‐/desorption on MSx Ny catalysts, leading to enhanced HER kinetics. Toward the activity origin of MS2N2, the experimental and theoretical results disclose that the metal atoms are preferentially protonated and then the production of H2 is favored on the M? N active sites after a heterocoupling step involving a N‐bound proton and a metal‐bound hydride. Moreover, the tuning of the metal centers in MS2N2 leads to the HER performance in the order of FeS2N2 > CoS2N2 > NiS2N2. Thus, the understanding of the catalytic active sites provides strategies for the enhancement of the electrocatalytic activity by tailoring the ligands and metal centers to the desired function.  相似文献   

7.
MoS2 becomes an efficient and durable nonprecious‐metal electrocatalyst for the hydrogen evolution reaction (HER) when it contains multifunctional active sites for water splitting derived from 1T‐phase, defects, S vacancies, exposed Mo edges with expanded interlayer spacings. In contrast to previously reported MoS2‐based catalysts targeting only a single or few of these characteristics, the all‐in‐one MoS2 catalyst prepared herein features all of the above active site types. During synthesis, the intercalation of in situ generated NH3 molecules into MoS2 sheets affords ammoniated MoS2 (A‐MoS2) that predominantly comprises 1T‐MoS2 and exhibits an expanded interlayer spacing. The subsequent reduction of A‐MoS2 results in the removal of intercalated NH3 and H2S to form an all‐in‐one MoS2 with multifunctional active sites mentioned above (R‐MoS2) that exhibits electrocatalytic HER performance in alkaline media superior to those of all previously reported MoS2‐based electrocatalysts. In particular, a hybrid MoS2/nickel foam catalyst outperforms commercial Pt/C in the practically meaningful high‐current region (>25 mA cm?2), demonstrating that R‐MoS2‐based materials can potentially replace Pt catalysts in practical alkaline HER systems.  相似文献   

8.
The vast majority of the reported hydrogen evolution reaction (HER) electrocatalysts perform poorly under alkaline conditions due to the sluggish water dissociation kinetics. Herein, a hybridization catalyst construction concept is presented to dramatically enhance the alkaline HER activities of catalysts based on 2D transition metal dichalcogenides (TMDs) (MoS2 and WS2). A series of ultrathin 2D‐hybrids are synthesized via facile controllable growth of 3d metal (Ni, Co, Fe, Mn) hydroxides on the monolayer 2D‐TMD nanosheets. The resultant Ni(OH)2 and Co(OH)2 hybridized ultrathin MoS2 and WS2 nanosheet catalysts exhibit significantly enhanced alkaline HER activity and stability compared to their bare counterparts. The 2D‐MoS2/Co(OH)2 hybrid achieves an extremely low overpotential of ≈128 mV at 10 mA cm?2 in 1 m KOH. The combined theoretical and experimental studies confirm that the formation of the heterostructured boundaries by suitable hybridization of the TMD and 3d metal hydroxides is responsible for the improved alkaline HER activities because of the enhanced water dissociation step and lowers the corresponding kinetic energy barrier by the hybridized 3d metal hydroxides.  相似文献   

9.
Hydrogen evolution reaction (HER) from water electrolysis is an attractive technique developed in recent years for cost‐effective clean energy. Although considerable efforts have been paid to create efficient catalysts for HER, the development of an affordable HER catalyst with superior performance under mild conditions is still highly desired. In this work, metal–organic frameworks (MOFs)‐templated strategy is proposed for in situ coupling of cobalt phosphide (CoP) polyhedrons nanoparticles and carbon nanotubes (CNTs). Due to the synergistic catalytic effect between CoP polyhedrons and CNTs, the as‐prepared CoP–CNTs hybrids show excellent HER performance. The resultant CoP–CNTs demonstrate excellent HER activity in 0.5 m H2SO4 with Tafel slope of 52 mV dec?1, small onset overpotential of ≈64 mV, and a low overpotential of ≈139 mV at 10 mA cm?2. Additionally, the catalyst also manifests superior durability in acid media. Considering the structure diversity of MOFs, the strategy presented here can be extended for synthesizing other well‐defined metal phosphides–CNTs hybrids, which may be used in the fields of catalysis, energy conversion and storage.  相似文献   

10.
Developing efficient earth‐abundant MoS2 based hydrogen evolution reaction (HER) electrocatalysts is important but challenging due to the sluggish kinetics in alkaline media. Herein, a strategy to fabricate a high‐performance MoS2 based HER electrocatalyst by modulating interface electronic structure via metal oxides is developed. All the heterostructure catalysts present significant improvement of HER electrocatalytic activities, demonstrating a positive role of metal oxides decoration in promoting the rate‐limited water dissociation step for the HER mechanism in alkaline media. The as‐obtained MoS2/Ni2O3H catalyst exhibits a low overpotential of 84 mV at 10 mA cm?2 and small charge‐transfer resistance of 1.5 Ω in 1 m KOH solution. The current density (217 mA cm?2) at the overpotential of 200 mV is about 2 and 24 times higher than that of commercial Pt/C and bare MoS2, respectively. Additionally, these MoS2/metal oxides heterostructure catalysts show outstanding long‐term stability under a harsh chronopotentiometry test. Theoretical calculations reveal the varied sensitivity of 3d‐band in different transition oxides, in which Ni‐3d of Ni2O3H is evidently activated to achieve fast electron transfer for HER as the electron‐depletion center. Both electronic properties and energetic reaction trends confirm the high electroactivity of MoS2/Ni2O3H in the adsorption and dissociation of H2O for highly efficient HER in alkaline media.  相似文献   

11.
The development of highly efficient and durable non‐noble metal electrocatalysts for the hydrogen evolution reaction (HER) is significant for clean and renewable energy research. This work reports the synthesis of N‐doped graphene nanosheets supported N‐doped carbon coated cobalt phosphide (CoP) nanoparticles via a pyrolysis and a subsequent phosphating process by using polyaniline. The obtained electrocatalyst exhibits excellent electrochemical activity for HER with a small overpotential of ?135 mV at 10 mA cm?2 and a low Tafel slope of 59.3 mV dec?1 in 0.5 m H2SO4. Additionally, the encapsulation of N‐doped carbon shell prevents CoP nanoparticles from corrosion, exhibiting good stability after 14 h operation. Moreover, the as‐prepared electrocatalyst also shows outstanding activity and stability in basic and neutral electrolytes.  相似文献   

12.
It is still challenging to develop high‐efficiency and low‐cost non‐noble metal‐based electrocatalysts for hydrogen evolution reaction (HER) in pH‐universal electrolytes. Herein, hierarchically porous W‐doped CoP nanoflake arrays on carbon cloth (W‐CoP NAs/CC) are synthesized via facile liquid‐phase reactions and a subsequent phosphorization process. The W‐CoP NAs/CC hybrid can be directly employed as a binder‐free electrocatalyst and delivers superior HER performance in pH‐universal electrolytes. Especially, it delivers very low overpotentials of 89, 94, and 102 mV to reach a current density of 10 mA cm–2 in acidic, alkaline, and neutral electrolytes, respectively. Furthermore, it shows a nearly 100% Faradaic efficiency as well as superior long‐term stability with no decreasing up to 36 h in pH‐universal electrolytes. The outstanding electrocatalytic performance of W‐CoP NAs/CC can be mainly attributed to the porous W‐doped nanoflake arrays, which not only afford rich exposed active sites, but also accelerate the access of electrolytes and the diffusion of H2 bubbles, thus efficiently promoting the HER performance. This work provides a new horizon to rationally design and synthesize highly effective and stable non‐noble metal phosphide‐based pH‐universal electrocatalysts for HER.  相似文献   

13.
Despite many encouraging properties of transition metal dichalcogenides (TMDs), a central challenge in the realm of industrial applications based on TMD materials is to connect the large‐scale synthesis and reproducible production of highly crystalline TMD materials. Here, the primary aim is to resolve simultaneously the two inversely related issues through the synthesis of MoS2(1?x )Se2x ternary alloys with customizable bichalcogen atomic (S and Se) ratio via atomic‐level substitution combined with a solution‐based large‐area compatible approach. The relative concentration of bichalcogen atoms in the 2D alloy can be effectively modulated by altering the selenization temperature, resulting in 4 in. scale production of MoS1.62Se0.38, MoS1.37Se0.63, MoS1.15Se0.85, and MoS0.46Se1.54 alloys, as well as MoS2 and MoSe2. Comprehensive spectroscopic evaluations for vertical and lateral homogeneity in terms of heteroatom distribution in the large‐scale 2D TMD alloys are implemented. Se‐stimulated strain effects and a detailed mechanism for the Se substitution in the MoS2 crystal are further explored. Finally, the capability of the 2D alloy for industrial application in nanophotonic devices and hydrogen evolution reaction (HER) catalysts is validated. Substantial enhancements in the optoelectronic and HER performances of the 2D ternary alloy compared with those of its binary counterparts, including pure‐phase MoS2 and MoSe2, are unambiguously achieved.  相似文献   

14.
Hydrogen evolution reaction (HER) has prospect to becoming clean and renewable technology for hydrogen production and Ni–Mo alloy is among the best HER catalysts in alkaline electrolytes. Here, an in situ topotactic reduction method to synthesize ultrathin 2D Ni–Mo alloy nanosheets for electrocatalytic hydrogen evolution is reported. Due to its ultrathin structure and tailored composition, the as‐synthesized Ni–Mo alloy shows an overpotential of 35 mV to reach a current density of 10 mA cm?2, along with a Tafel slope of 45 mV decade?1, demonstrating a comparable intrinsic activity to state‐of‐art commercial Pt/C catalyst. Besides, the vertically aligned assemble structure of the 2D NiMo nanosheets on conductive substrate makes the electrode “superaerophobic,” thus leading to much faster bubble releasing during HER process and therefore shows faster mass transfer behavior at high current density as compared with drop drying Pt/C catalyst on the same substrate. Such in situ topotactic conversion finds a way to design and fabricate low‐cost, earth‐abundant non‐noble metal based ultrathin 2D nanostructures for electrocatalytic issues.  相似文献   

15.
The rational design of an efficient and inexpensive electrocatalyst based on earth‐abundant 3d transition metals (TMs) for the hydrogen evolution reaction still remains a significant challenge in the renewable energy area. Herein, a novel and effective approach is developed for synthesizing ultrafine Co nanoparticles encapsulated in nitrogen‐doped carbon nanotubes (N‐CNTs) grafted onto both sides of reduced graphene oxide (rGO) (Co@N‐CNTs@rGO) by direct annealing of GO‐wrapped core–shell bimetallic zeolite imidazolate frameworks. Benefiting from the uniform distribution of Co nanoparticles, the in‐situ‐formed highly graphitic N‐CNTs@rGO, the large surface area, and the abundant porosity, the as‐fabricated Co@N‐CNTs@rGO composites exhibit excellent electrocatalytic hydrogen evolution reaction (HER) activity. As demonstrated in electrochemical measurements, the composites can achieve 10 mA cm?2 at low overpotential with only 108 and 87 mV in 1 m KOH and 0.5 m H2SO4, respectively, much better than most of the reported Co‐based electrocatalysts over a wide pH range. More importantly, the synthetic strategy is versatile and can be extended to prepare other binary or even ternary TMs@N‐CNTs@rGO (e.g., Co–Fe@N‐CNTs@rGO and Co–Ni–Cu@N‐CNTs@rGO). The strategy developed here may open a new avenue toward the development of nonprecious high‐performance HER catalysts.  相似文献   

16.
Since first being reported as possible electrocatalysts to substitute platinum for the oxygen reduction reaction (ORR), carbon‐based metal‐free nanomaterials have been considered a class of promising low‐cost materials for clean and sustainable energy‐conversion reactions. However, beyond the ORR, the development of carbon‐based catalysts for other electrocatalytic reactions is still limited. More importantly, the intrinsic activity of most carbon‐based metal‐free catalysts is inadequate compared to their metal‐based counterparts. To address this challenge, more design strategies are needed in order to improve the overall performance of carbon‐based materials. Herein, using water splitting as an example, some state‐of‐the‐art strategies in promoting carbon‐based nanomaterials are summarized, including graphene, carbon nanotubes, and graphitic‐carbon nitride, as highly active electrocatalysts for hydrogen evolution and oxygen evolution reactions. It is shown that by rationally tuning the electronic and/or physical structure of the carbon nanomaterials, adsorption of reaction intermediates is optimized, consequently improving the apparent electrocatalytic performance. These strategies may facilitate the development in this area and lead to the discovery of advanced carbon‐based nanomaterials for various applications in energy‐conversion processes.  相似文献   

17.
Under the double pressures of both the energy crisis and environmental pollution, the exploitation and utilization of hydrogen, a clean and renewable power resource, has become an important trend in the development of sustainable energy‐production and energy‐consumption systems. In this regard, the electrocatalytic hydrogen evolution reaction (HER) provides an efficient and clean pathway for the mass production of hydrogen fuel and has motivated the design and construction of highly active HER electrocatalysts of an acceptable cost. In particular, graphene‐based electrocatalysts commonly exhibit an enhanced HER performance owing to their distinctive structural merits, including a large surface area, high electrical conductivity, and good chemical stability. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a panoramic review of recent advances in graphene‐based electrocatalysts is presented, covering various advanced synthetic strategies, microstructural characterizations, and the applications of such materials in HER electrocatalysis. Lastly, future perspectives on the challenges and opportunities awaiting this emerging field are proposed and discussed.  相似文献   

18.
Developing non‐noble metal catalysts as Pt substitutes, with good activity and stability, remains a great challenge for cost‐effective electrochemical evolution of hydrogen. Herein, carbon‐encapsulated WOx anchored on a carbon support (WOx@C/C) that has remarkable Pt‐like catalytic behavior for the hydrogen evolution reaction (HER) is reported. Theoretical calculations reveal that carbon encapsulation improves the conductivity, acting as an electron acceptor/donor, and also modifies the Gibbs free energy of H* values for different adsorption sites (carbon atoms over the W atom, O atom, W? O bond, and hollow sites). Experimental results confirm that WOx@C/C obtained at 900 °C with 40 wt% metal loading has excellent HER activity regarding its Tafel slope and overpotential at 10 and 60 mA cm?2, and also has outstanding stability at ?50 mV for 18 h. Overall, the results and facile synthesis method offer an exciting avenue for the design of cost‐effective catalysts for scalable hydrogen generation.  相似文献   

19.
As the key of hydrogen economy, electrocatalytic hydrogen evolution reactions (HERs) depend on the availability of cost‐efficient electrocatalysts. Over the past years, there is a rapid rise in noble‐metal‐free electrocatalysts. Among them, transition metal carbides (TMCs) are highlighted due to their structural and electronic merits, e.g., high conductivity, metallic band states, tunable surface/bulk architectures, etc. Herein, representative efforts and progress made on TMCs are comprehensively reviewed, focusing on the noble‐metal‐like electronic configuration and the relevant structural/electronic modulation. Briefly, specific nanostructures and carbon‐based hybrids are introduced to increase active‐site abundance and to promote mass transportation, and heteroatom doping and heterointerface engineering are encouraged to optimize the chemical configurations of active sites toward intrinsically boosted HER kinetics. Finally, a perspective on the future development of TMC electrocatalysts is offered. The overall aim is to shed some light on the exploration of emerging materials in energy chemistry.  相似文献   

20.
Although much attention has been paid to the exploration of highly active electrocatalysts, especially catalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and oxygen reduction reaction (ORR), the development of multifunctional catalysts remains a challenge. Here, we utilize AuNi heterodimers as the starting materials to achieve high activities toward HER, OER and ORR. The HER and ORR activities in an alkali environment are similar to those of Pt catalysts, and the OER activity is very high and better than that of commercial IrO2. Both the experimental and calculated results suggest that the surface oxidation under oxidative conditions is the main reason for the different activities. The NiO/Ni interface which exists in the as‐synthesized heterodimers contributes to high HER activity, the Ni(OH)2‐Ni‐Au interface and the surface Ni(OH)2 obtained in electrochemical conditons gives rise to promising ORR and OER activities, respectively. As a comparison, a Au@Ni core‐shell structure is also synthesized and examined. The core‐shell structure shows lower activities for HER and OER than the heterodimers, and reduces O2 selectively to H2O2. The work here allows for the development of a method to design multifunctional catalysts via the partial oxidation of a metal surface to create different active centers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号