首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biomaterials currently used in cardiac tissue engineering have certain limitations, such as lack of electrical conductivity and appropriate mechanical properties, which are two parameters playing a key role in regulating cardiac cell behavior. Here, the myocardial tissue constructs are engineered based on reduced graphene oxide (rGO)‐incorporated gelatin methacryloyl (GelMA) hybrid hydrogels. The incorporation of rGO into the GelMA matrix significantly enhances the electrical conductivity and mechanical properties of the material. Moreover, cells cultured on composite rGO‐GelMA scaffolds exhibit better biological activities such as cell viability, proliferation, and maturation compared to ones cultured on GelMA hydrogels. Cardiomyocytes show stronger contractility and faster spontaneous beating rate on rGO‐GelMA hydrogel sheets compared to those on pristine GelMA hydrogels, as well as GO‐GelMA hydrogel sheets with similar mechanical property and particle concentration. Our strategy of integrating rGO within a biocompatible hydrogel is expected to be broadly applicable for future biomaterial designs to improve tissue engineering outcomes. The engineered cardiac tissue constructs using rGO incorporated hybrid hydrogels can potentially provide high‐fidelity tissue models for drug studies and the investigations of cardiac tissue development and/or disease processes in vitro.  相似文献   

2.
3.
Biological tissues generally exhibit excellent anisotropic mechanical properties owing to their well‐developed microstructures. Inspired by the aligned structure in muscles, a highly anisotropic, strong, and conductive wood hydrogel is developed by fully utilizing the high–tensile strength of natural wood, and the flexibility and high‐water content of hydrogels. The wood hydrogel exhibits a high–tensile strength of 36 MPa along the longitudinal direction due to the strong bonding and cross‐linking between the aligned cellulose nanofibers (CNFs) in wood and the polyacrylamide (PAM) polymer. The wood hydrogel is 5 times and 500 times stronger than the bacterial cellulose hydrogels (7.2 MPa) and the unmodified PAM hydrogel (0.072 MPa), respectively, representing one of the strongest hydrogels ever reported. Due to the negatively charged aligned CNF, the wood hydrogel is also an excellent nanofluidic conduit with an ionic conductivity of up to 5 × 10?4 S cm–1 at low concentrations for highly selective ion transport, akin to biological muscle tissue. The work offers a promising strategy to fabricate a wide variety of strong, anisotropic, flexible, and ionically conductive wood‐based hydrogels for potential biomaterials and nanofluidic applications.  相似文献   

4.
5.
Hybrid ionically–covalently crosslinked double‐network (DN) hydrogels are attracting increasing attention on account of their self‐recovery ability and fatigue resistance, but their relative low mechanical strength and tedious performance adjustment severely limit their applications. Herein, a new strategy to concurrently fabricate hybrid ionic–covalent DN hydrogels and modulate their structures and mechanics is reported, in which an in situ formed chitosan ionic network is incorporated by post‐crosslinking the chitosan‐based composite hydrogel using multivalent anions solutions. The obtained hybrid DN hydrogels exhibit predominant mechanical properties including superior elastic modulus, high tensile strength, and ultrahigh fracture energy because of the more efficient energy dissipation of rigid short‐chain chitosan network. Notably, the swollen hydrogels still remain mechanically strong and tough even after immersion in water for 24 h. More significantly, simply changing the post‐crosslinking time can vary the compactness and rigidity of the chitosan network in situ, achieving flexible and efficient modulation of the structures and mechanics of the hybrid DN hydrogels. This study opens up a new horizon in the preparation and regulation of DN hydrogels for promising applications in tissue scaffolds, actuators, and wearable devices.  相似文献   

6.
7.
Structural color hydrogels are promising candidates as scaffold materials for tissue engineering and for matrix cell culture and manipulation, while their super‐elastic features are still lacking due to the irreconcilable interfere of the precursor and the self‐assembly unit. This hinders many of their practical biomedical applications where elasticity is required. Herein, hydrophilic and size‐controllable Fe3O4@poly(4‐styrenesulfonic acid‐co‐maleic acid) (PSSMA)@SiO2 magnetic response photonic crystals are fabricated as the assembly units of the structural color hydrogels by orderly packing of core–shell colloidal nanocrystal clusters via a two‐step facile synthesis approach. These units are capable of responding instantaneously to an external magnetic field with resistance to interference of ions, thus, by integrating super‐elastic hydrogels, super‐elastic magnetic structural color hydrogels can be achieved. The structural color arises from the dynamic ordering of the magnetic nanoparticles through the contactless control of external magnetic field, allowing regional polymerization of hydrogels via changing orientation and strength of external magnetic field. These regionally polymerized super‐elastic magnetic structural color hydrogels can work as anti‐counterfeiting labels with super‐elastic identification, which may be widely used in the future.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
Given their highly porous nature and excellent water retention, hydrogel‐based biomaterials can mimic critical properties of the native cellular environment. However, their potential to emulate the electromechanical milieu of native tissues or conform well with the curved topology of human organs needs to be further explored to address a broad range of physiological demands of the body. In this regard, the incorporation of nanomaterials within hydrogels has shown great promise, as a simple one‐step approach, to generate multifunctional scaffolds with previously unattainable biological, mechanical, and electrical properties. Here, recent advances in the fabrication and application of nanocomposite hydrogels in tissue engineering applications are described, with specific attention toward skeletal and electroactive tissues, such as cardiac, nerve, bone, cartilage, and skeletal muscle. Additionally, some potential uses of nanoreinforced hydrogels within the emerging disciplines of cyborganics, bionics, and soft biorobotics are highlighted.  相似文献   

17.
18.
19.
20.
Significant advances in materials, microscale technology, and stem cell biology have enabled the construction of 3D tissues and organs, which will ultimately lead to more effective diagnostics and therapy. Organoids and organs‐on‐a‐chip (OOC), evolved from developmental biology and bioengineering principles, have emerged as major technological breakthrough and distinct model systems to revolutionize biomedical research and drug discovery by recapitulating the key structural and functional complexity of human organs in vitro. There is growing interest in the development of functional biomaterials, especially hydrogels, for utilization in these promising systems to build more physiologically relevant 3D tissues with defined properties. The remarkable properties of defined hydrogels as proper extracellular matrix that can instruct cellular behaviors are presented. The recent trend where functional hydrogels are integrated into organoids and OOC systems for the construction of 3D tissue models is highlighted. Future opportunities and perspectives in the development of advanced hydrogels toward accelerating organoids and OOC research in biomedical applications are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号