首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Over the past three decades, significant research efforts have focused on improving the charge carrier mobility of organic thin‐film transistors (OTFTs). In recent years, a commonly observed nonlinearity in OTFT current–voltage characteristics, known as the “kink” or “double slope,” has led to widespread mobility overestimations, contaminating the relevant literature. Here, published data from the past 30 years is reviewed to uncover the extent of the field‐effect mobility hype and identify the progress that has actually been achieved in the field of OTFTs. Present carrier‐mobility‐related challenges are identified, finding that reliable hole and electron mobility values of 20 and 10 cm2 V?1 s?1, respectively, have yet to be achieved. Based on the analysis, the literature is then reviewed to summarize the concepts behind the success of high‐performance p‐type polymers, along with the latest understanding of the design criteria that will enable further mobility enhancement in n‐type polymers and small molecules, and the reasons why high carrier mobility values have been consistently produced from small molecule/polymer blend semiconductors. Overall, this review brings together important information that aids reliable OTFT data analysis, while providing guidelines for the development of next‐generation organic semiconductors.  相似文献   

2.
3.
4.
Molecular doping of organic electronics has shown promise to sensitively modulate important device metrics. One critical challenge is the disruption of structure order upon doping of highly crystalline organic semiconductors, which significantly reduces the charge carrier mobility. This paper demonstrates a new method to achieve large modulation of charge carrier mobility via channel doping without disrupting the molecular ordering. Central to the method is the introduction of nanopores into the organic semiconductor thin films via a simple and robust templated meniscus‐guided coating method. Using this method, the charge carrier mobility of C8‐benzothieno[3,2‐b]benzothiophene transistors is boosted by almost sevenfold. This paper further demonstrates enhanced electron transport by close to an order of magnitude in a diketopyrrolopyrrole‐based donor–acceptor polymer. Combining spectroscopic measurements, density functional theory calculations, and electrical characterizations, the doping mechanism is identified as partial‐charge‐transfer induced trap filling. The nanopores serve to enhance the dopant/organic semiconductor charge transfer reaction by exposing the π‐electrons to the pore wall.  相似文献   

5.
6.
7.
8.
9.
10.
Fast deposition of aligning ambipolar polymers for high‐performance organic field‐effect transistors (OFETs) and inverter circuits are highly desired for both scientific studies and industry applications. Here, large‐area and ordered polymer films are prepared by a bar‐coating method at a rate of 120 mm s?1 in air. Atomic force microscopy and grazing‐incidence wide‐angle X‐ray scattering analysis indicate uniform edge‐on poly(fluoroisoindigo‐difluorobithiophene‐fluoroisoindigo‐bithiophene) (PFIBI‐BT) in 11.7 ± 1 nm film (≈5 layers). The elongated, uniformly oriented grains can reduce the adverse effects of the grain boundaries and facilitate charge transport in polymers. Furthermore, OFETs based on parallel film show high hole/electron mobilities up to 5.5/4.5 cm2 V?1 s?1, which are approximately nine times of the devices prepared by spin‐coating. The gain of the inverter is as high as 174, which is one of the highest values in polymer inventers currently. These results demonstrate that the excellent bipolar performance of few‐layer PFIBI‐BT can be ensured while achieving the compatibility of the experimental process with industrial preparation.  相似文献   

11.
12.
13.
14.
15.
16.
Vertical organic thin‐film transistors (VOTFTs) are promising devices to overcome the transconductance and cut‐off frequency restrictions of horizontal organic thin‐film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self‐assembly processes which impedes a future large‐area production. In this contribution, high‐performance vertical organic transistors comprising pentacene for p‐type operation and C60 for n‐type operation are presented. The static current–voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self‐assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high‐performance applications of organic transistors.  相似文献   

17.
18.
Molecular engineering of tetraazapentacene with different numbers of fluorine and chlorine substituents fine‐tunes the frontier molecular orbitals, molecular vibrations, and π–π stacking for n‐type organic semiconductors. Among the six halogenated tetraazapentacenes studied herein, the tetrachloro derivative (4Cl‐TAP) in solution‐processed thin‐film transistors exhibits electron mobility of 14.9 ± 4.9 cm2 V?1 s?1 with a maximum value of 27.8 cm2 V?1 s?1, which sets a new record for n‐channel organic field‐effect transistors. Computational studies on the basis of crystal structures shed light on the structure–property relationships for organic semiconductors. First, chlorine substituents slightly decrease the reorganization energy of the tetraazapentacene whereas fluorine substituents increase the reorganization energy as a result of fine‐tuning molecular vibrations. Second, the electron transfer integral is very sensitive to subtle changes in the 2D π‐stacking with brickwork arrangement. The unprecedentedly high electron mobility of 4Cl‐TAP is attributed to the reduced reorganization energy and enhanced electron transfer integral as a result of modification of tetraazapentacene with four chlorine substituents.  相似文献   

19.
New 3,3′‐dithioalkyl‐2,2′‐bithiophene ( SBT )‐based small molecular and polymeric semiconductors are synthesized by end‐capping or copolymerization with dithienothiophen‐2‐yl units. Single‐crystal, molecular orbital computations, and optical/electrochemical data indicate that the SBT core is completely planar, likely via S(alkyl)?S(thiophene) intramolecular locks. Therefore, compared to semiconductors based on the conventional 3,3′‐dialkyl‐2,2′‐bithiophene, the resulting SBT systems are planar (torsional angle <1°) and highly π‐conjugated. Charge transport is investigated for solution‐sheared films in field‐effect transistors demonstrating that SBT can enable good semiconducting materials with hole mobilities ranging from ≈0.03 to 1.7 cm2 V?1 s?1. Transport difference within this family is rationalized by film morphology, as accessed by grazing incidence X‐ray diffraction experiments.  相似文献   

20.
Remarkable progress has been made in developing high performance organic field‐effect transistors (OFETs) and the mobility of OFETs has been approaching the values of polycrystalline silicon, meeting the requirements of various electronic applications from electronic papers to integrated circuits. In this review, the key points for development of high mobility OFETs are highlighted from aspects of molecular engineering, process engineering and interface engineering. The importance of other factors, such as impurities and testing conditions is also addressed. Finally, the current challenges in this field for practical applications of OFETs are further discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号