首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Blends of a thermotropic liquid crystalline polymer (LCP) with poly(ether imide) (PEI), poly(ether ether ketone) (PEEK), polysulfone (PSF) and polyarylsulfone (PAS) prepared by screw extrusion have been investigated by differential scanning calorimeter and dynamic mechanical thermal analysis. From the measured glass transition temperature (Tg) and specific heat increment (ΔCp) at the Tg, it appears that the LCP dissolves more in the PEI- and PEEK-rich phases than does the PEI and PEEK in the LCP-rich phase. From the DSC study of PSF-LCP and PAS-LCP blends, the Tg(PSF) and Tg(PAS) of each blends are almost constant with blend composition. Therefore, it is concluded that PSF and PAS are immiscible with LCP. The polymer-polymer interaction parameter (χ12) and the degree of disorder (y/x1) of LCP have been investigated using the Flory lattice theory in which the anisotropy of LCP is considered. The χ12 values have been calculated from the Tg data and found to be 0.181 ± 0.004 at 593 K for the PEI-LCP blends and 0.069 ± 0.006 at 623 K for the PEEK-LCP blends. Using the previously presented method, the χ12 and y/x1 in partially miscible systems have been determined. Received: 6 April 1998/Revised version: 8 June 1998/Accepted: 17 June 1998  相似文献   

2.
Summary Liquid crystalline/conducting polymer blends have been prepared. The conductingpolymer [poly(2,5-dimethoxyphenylene vinylene)] retards the liquid crystallinity of the liquid crystalline polymer (hydroxypropyl cellulose), while the liquid crystalline polymer reduces the conductivity of the conducting polymer. However, blends with 17% conducting polymer were both liquid crystalline and conductive. Dedicated to Prof. Dragutin Fleš on the occasion of his 70th birthday  相似文献   

3.
Liquid crystalline polymer (LCP) blends with a thermotropic LCP dispersed in the form of microspheres is studied to show the role of LCP spheres. Polycarbonate (PC), p‐hydroxybenzoic acid–poly(ethylene terephthalate) copolyester, and random styrene–maleic anhydride copolymer are used as the matrix, the dispersed phase, and the compatibilizer, respectively. A scanning electron microscopy observation shows the formation of LCP spheres with improved interfacial adhesion in the injection‐molded samples via compatibilization. The mechanical tests show increased modulus, elongation at break, and fracture‐absorbed energy of blends of LCP spheres‐dispersed PC. This shows an optimistic potential for the dispersed LCP phase, in spite of its morphology in the form of fibrils for reinforcing the matrix or in the form of microspheres for toughening the matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1493–1499, 2003  相似文献   

4.
5.
The dynamic crystallization and subsequent melting behaviour of poly(aryl ether ether ketone), PEEK, and its blends with a thermotropic liquid crystalline polymer, Vectra®, have been studied using differential scanning calorimetry, optical microscopy and wide‐angle and small‐angle X‐ray diffraction (WAXS and SAXS) techniques in a wide compositional range. Differences in crystallization rates and crystallinities were related to the structural and morphological characteristics of the blends measured by simultaneous real‐time WAXS and SAXS experiments using synchrotron radiation and optical microscopy. The crystallization process of PEEK in the blends takes place in the presence of the nematic phase of Vectra and leads to the formation of two different crystalline families. The addition of Vectra reduces the crystallization rate of PEEK, depending on composition, and more perfect crystals are formed. An increase in the long period of PEEK during heating was generally observed in the blends at all cooling rates. Copyright © 2003 Society of Chemical Industry  相似文献   

6.
The effect of deformation history on the morphology and properties of liquid crystalline polymers (LCP) blended with polycarbonate resin was assessed. The addition of an immiscible LCP phase was found to improve the melt processability of the host thermoplastic polymer. In addition, by employing a suitable deformation history, the LCP phase may be elongated and oriented such that a microfibrillar morphology can be retained in the solid state.  相似文献   

7.
Blends of poly(ethylene terephthalate-Co-p-oxybenzoate), PET/PHB, with poly(ethylene terephthalate), PET, have been studied in the form of as-spun and drawn fibers. DSC melting and crystallization results show that the PET is compatible with LCP and the crystallization of PET decreases by the addition of LCP in the matrix. Upon heating above the crystal melting temperature of PET, the blend shows good dispersion of LCP in the PET matrix. Wide angle X-ray diffraction of drawn blended fibers show the possible formation of LCP oriented domains. The mechanical properties of drawn fiber up to 10 wt% LCP composition exhibit significant improvement in tensile modulus and tensile strength with values of 17.7 GPa and 1.0 GPa, respectively. Values of modulus are compared with prediction from composite theory, assuming the blend system as nematic domains of LCP. dispersed in PET matrix.  相似文献   

8.
Summary Structure-property relationships of blends of a thermotropic polyester-type main-chain LCP and polybutylene terephthalate (PBT) were investigated. LCP was melt blended with three different PBTs and the blends were processed by injection moulding or extrusion. Mechanical and thermal properties of the blends were determined and the blend structure was characterized by scanning electron microscopy (SEM). LCP acted as mechanical reinforcement for PBT and improved also its dimensional and thermal stability. The stiffness of PBT increased with increasing LCP content, but at the same time the blends became more brittle. In extrusion the orientation of LCP phases could be further enhanced by additional drawing, which led to significant improvements in strength and stiffness at LCP contents of 20–30 wt.-%.  相似文献   

9.
Blends of thermotropic liquid crystalline polymer (LCP) and polyphenylene sulfide (PPS) were studied over the entire composition range using Rheometrics Stress Rheometer, capillary rheometer, and differential scanning calorimeter. There is no molecular scale mixing or chemical reaction between the components, as evidenced by melting and crystallization points in the PPS phase. From the strain scaling transients test at low‐rate, LCP and the blends require approximately 60 strain units to obtain steady stale shearing results. The large recoveries in the strain recovery test, magnitude 3 to 3.3 strain unit, are likely the results of texture present in LCPs. With increasing PPS content in LCP/PPS blends, the total recovery declines. Scaling of the transient strain rate remains, but the magnitude of the transients is reduced. At low‐rate, when the LCP is added to the PPS, the pure melts have similar visosity: 500 Pa · s for LCP and 600 Pa · s for PPS, but the viscosity of the blends goes through a maximum with concentration that is nearly three times the viscosity of the individual melts. At high‐rate, a significant depression of the viscosity is observed in the PPS‐rich compositions and this may be due to the fibrous structure of the LCP at high shear rates.  相似文献   

10.
In this paper the effect of the inclusion of two different thermotropic liquid crystalline polymers, namely Rodrun 3000 and Vectra A950, in a PP matrix is analyzed with particular attention to the gas transport and mechanical properties of the extruded blend films. The experiments, conducted on PP/Rodrun 3000 and PP/Vectra A950 films, have shown that the presence of TLCPs, also at low percentages, modify the properties of the thermoplastic matrix in a manner depending on the degree of compability and interfacial adhesion between the two components of the blends. Moreover, the effect of a maleic anhydride grafted PP (MAP), used as compatibilizing agent, on the properties and morphology of the PP/Rodrun 3000 system was examined. It was found that the addition of the MAP determines an increase in the barrier properties and in toughness of the films compared to those without MAP.  相似文献   

11.
Thermotropic liquid crystalline polymers, LCPs, are frequently blended with thermoplastics to achieve an in situ composite structure. Significant mechanical reinforcement is obtained for the matrix polymer in the direction of the LCP fibers, but the transversal properties are often inferior because of the incompatibility of the components. Blends of LCP with polypropylene, and with three related matrix polymers, and PP/LCP blends with added potential compatibilizers were prepared and studied for their mechanical properties and morphology. A notable improvement in impact strength was achieved when a small amount of ethylene-based terpolymer was added as compatibilizer. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Several polymer blend compositions of LaRC-TPI 1500 and New TPI 450 (Mitsui Toatsu) with Xydar SRT 900 LCP (Amoco Performance Products) were extrusion processed. In addition to binary blends containing one TPI with an LCP, ternary blends consisting of an alloy containing both TPIs as the matrix were also processed. By varying the ratio of the polyimides in the matrix, the blends' thermal behavior could be tailored. This paper addresses both processing issues and film properties of these blends. Rheological and thermal studies were conducted on both blends made in a torque rheometer and on biaxially oriented film produced with a counter-rotating annular die. These biaxial blend films were further characterized by measuring tensile and electrical properties. For 70/30 New TPI/Xydar equal biaxial films of 50 μm thickness, a modulus of 3.8 GPa and a stress at break of 100 MPa were measured. For near uniaxial blend films (±3°) a modulus of 14.5 GPa and a strength of 220 MPa in the machine direction (MD) were measured. The transverse direction (TD) properties were still higher than the neat New TPI. The electrical properties of these blends were outstanding. The dissipation factor was typically less than 0.01 for most blend compositions. Similarly, the dielectric constant was typically less than 3 up to temperatures as high as 300°C.  相似文献   

13.
Miscibility, rheology, and free volume properties of blends of thermotropic liquid crystalline polymers (TLCPs) (Vectra A950) and polycarbonate (PC) are studied in this work. Despite the unusual increase in Tg of the PC phase, the blends are found to be generally immiscible. Transesterification may occur during blending and be the cause of the increase of Tg of the PC phase and the partial miscibility of the blends at high TLCP concentrations. With regard to the melt rheology of these materials, according to a three‐zone model, dynamic moduli of Vectra A950 show plateau‐ and transition‐zone behavior, while PC exhibits terminal‐zone behavior. The blends show only terminal‐zone behavior at low Vectra A950 contents (≤50%) and terminal‐ and plateau‐zone behavior at higher Vectra A950 contents. The relaxation time of Vectra A950 is much longer than PC and the blends have relaxation times greater than additivity. Both the complex and steady shear viscosities of the blends increase with the addition of Vectra A950. This is attributed to interfacial association, which retards the reorientation and alignment of the Vectra A950 phase in the molten state. The Cox–Merz rule holds true for PC but not for Vectra A950 and the blends. Free volume properties on an angstrom scale evaluated by positron annihilation lifetime spectroscopy (PALS) indicate that Vectra A950 has smaller, fewer free volume cavities than PC and the variation of free volume behavior in the blends can be explained in terms of blend miscibility. The measured densities of the blends agree well with the free volume fractions of the blends determined from PALS. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2319–2330, 2000  相似文献   

14.
The shear and elongational viscosities of a thermotropic liquid crystalline polymer (LCP), polycarbonate (PC), and their 20%LCP/80%PC blend, were studied using a capillary rheometer. The investigation focused on experimental studies using two sets of capillaries. The first set comprised capillaries having a converging entrance followed by a cylindrical section. The second set, “zero length” set, included capillaries having only the converging section. In the two sets various entrance angles were used. Experimental results have shown that shear viscosities and entrance pressures are practically independent of the entrance angles. The entrance pressure drop was small in the case of PC and reached 50% of the total pressure drop for LCP. The elongational viscosities of the LCP were found to be higher than those of the PC in the elongational-rate range studies, while shear viscosities of the LCP were higher in the lower shear rate region and lower in the higher shear rate region compared to those of PC. This was attributed to the orientability of LCP in elongational and shear flows.  相似文献   

15.
A thermotropic liquid crystalline polymer (LCP), when added to polystyrene (PS), can function as both a processing aid and a reinforcing filler. Thermal, rheological, and mechanical properties of the pure components and blends containing up to 10 percent LCP are reported. The LCP used is immiscible with PS, and when an extensional component of flow is present during processing, the LCP forms an elongated fibrous phase oriented in the flow direction. This oriented phase lubricates the melt, substantially lowering the viscosity. When the processed blend is cooled, the dispersed fibrous LCP phase is preserved in the solidified material. The LCP microfibers behave like short reinforcing fibers to improve the mechanical properties of the blend; for example, at an LCP concentration of 4.5 percent, the modulus is increased about 40 percent vs. pure PS.  相似文献   

16.
The post extrusion hot drawing of polycarbonate/liquid crystalline polymer (PC/LCP) blends, over the entire composition range, was studied. The extruded filament morphology and elastic modulus were followed as a function of blends composition, initial phase morphology, and draw ratio (DR). Hot drawing was found to cause further orientation to the already existing partially oriented LCP phase at the die exit, as reflected by the increased blends modulus. The additional orientation depends on the initial filaments structure, the blend composition, and the DR. Moreover, the orientability of the LCP phase is much higher, similar to that of neat LCP, for blends in which the LCP forms the continuous phase. In low LCP content blends, a critical DR was identified, beyond which the LCP fibrils undergo fragmentation and voids at the fibrils/matrix interface are formed, resulting in a decrease in the drawn filament modulus.  相似文献   

17.
This paper is concerned with properties and processing performance of two thermotropic liquid crystalline polymers (TLCPs) produced by DuPont (HX6000 and HX8000) with widely varying melting points and blends of these two TLCPs. This work was carried out in an effort to develop a TLCP suitable for generating poly(ethylene terephthalate) (PET) composites in which the melting point of the TLCP was higher than the processing temperature of PET. Strands of the neat TLCPs and a 50/50 wt % TLCP–TLCP blend were spun and tested for their tensile properties. It was determined that the moduli of the HX8000, HX6000, and HX6000–HX8000 blend strands were 47.1, 70, and 38.5 GPa, respectfully. Monofilaments of PET–HX6000–HX8000 (50/25/25 wt %) were spun with the use of a novel dual extruder process. The strands had moduli as high as 28 GPa, exceeding predictions made using the rule of mixtures and tensile strengths around 275 MPa. The strands were then uniaxially compression molded at 270°C. It was found that after compression molding, the modulus dropped from 28 GPa to roughly 12 GPa due to the loss of molecular orientation in the TLCP phase. However, this represents an improvement over the use of HX8000. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 2209–2218, 1999  相似文献   

18.
Thermally induced phase separation in liquid crystalline polymer (LCP)/polycarbonate (PC) blends was investigated in this study. The LCP used is a main‐chain type copolyester comprised of p‐hydroxybenoic acid and 6‐hydroxy‐2‐naphthoic acid. Specimens for microscopic observation were prepared by melt blending. The specimens were heated to a preselected temperature, at which they were held for isothermal phase separation. The preselected temperatures used in this study were 265, 290, and 300°C. The LCP contents used were 10, 20, and 50 wt %. These parameters corresponded to different positions on the phase diagram of the blends. The development of the phase‐separated morphology in the blends was monitored in real time and space. It was observed that an initial rapid phase separation was followed by the coarsening of the dispersed domains. The blends developed into various types of phase‐separated morphology, depending on the concentration and temperature at which phase separation occurred. The following coarsening mechanisms of the phase‐separated domains were observed in the late stages of the phase separation in these blends: (i) diffusion and coalescence of the LCP‐rich droplets; (ii) vanishing of the PC‐rich domains following the evaporation‐condensation mechanism; and (iii) breakage and shrinkage of the LCP‐rich domains. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
The effects of annealing time and temperature on the texture and transient shear rheological behavior of a thermotropic liquid crystalline polymer were investigated. The texture evolution during annealing included two processes: the reduction of the defect density and the increase of the domain size but decrease of the domain number. We confirmed that the threaded texture caused the first shear stress peak and the shear stress minimum during shear flow startup. More importantly, using the wide‐angle X‐ray diffraction technique, we determined that the second shear stress peak during flow startup can be attributed to the evolution of the molecular orientation. POLYM. ENG. SCI., 46:1215–1222, 2006. © 2006 Society of Plastics Engineers  相似文献   

20.
Miscibility of binary and ternary polymer blends composed of thermotropic liquid crystalline polycarbonate (LCPC), poly(vinyl alcohol) (PVA), and chitosan was investigated by viscosity method, FTIR spectrum, and scanning electron microscope techniques. Effect of addition of chitosan as a compatibilizer on miscibility and morphology of binary LCPC/chitosan and PVA/chitosan and ternary LCPC/PVA/chitosan polymer blends was discussed. These measurements indicated that addition of chitosan into the blends of LCPC with PVA leads to an increase of miscibility and a formation of clear fibril structures on fractured surfaces, which are due to intermolecular hydrogen‐bonding interaction between LCPC, PVA, and chitosan chains. It was suggested that side‐chain hydroxy group of PVA and amino and hydroxy groups of chitosan play an important role in the formation of miscible phase and improvement of morphology in binary and ternary blends composed of LCPC, PVA, and chitosan. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1616–1622, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号